
DOCUMENT RESUME

ED 080 121 LI 004 426

AUTHOR Kilgour, Frederick G., Comp.; Davis, Hillis D.,
Comp.

TITLE The Development of a Computerized Regional Library
System._ Appendix 25. Final Report.

INSTITUTION Ohio Coll. Library Center, Columbus.
SPONS AGENCY Office of Education (DREW), Washington, D.C.
BUREAU NO BR-9-0554
PUB DATE Jun 73
CONTRACT OEC -0 -70 -2289 (506)
NOTE 148p.; (0 References)

EDRS PRICE MF-$0.65 HC-$6.58
DESCRIPTORS Bibliographic Citations; *Cataloging; College

Libraries; Computer Programs; Expenditure Per
Student; Library Automation; *Library Expene44-mres;
*Library Networks; *On Line Systems; Regiona
Programs; Onion Catalogs; *Uniyersity Librat,.es

IDENTIFIERS OCLC; *Ohio College Library Center

ABSTRACT
The purpose of the Ohio College Library Center (OCLC)

computerized regional library system is to provide an on-line system
that makes available to faculty and students in individual colleges
and universities the library resources throughout a region, while at
the same time decelerating the rate of rise of per-student library
costs. The research and development culminated in the successful
implementation of an on-line union catalog and shared cataloging
system. The final report of the project is LI 004 422._This document
contains appendix twenty-five, The Ohio College Library Center
Program/Subroutine Documentation; Convert Call Number (CNVT). .CNVT is
the first step in the formatting and production pf catalog cards. The
primary function is to format the call number for each catalog card
request according to the predetermined specifications. To accomplish
the individual format, CNVT uses a massive tree structure of
information accessed by profiles, one profile per member holding
library. Secondary functions of CNVT include formatting of some user
data and selective deletion of unnecessary data from the member
profile._(Other appendices are LI 004 423 through LI 004 425, LI 004
427 and LI 004 428.) (Author/SJ)

-1

FILMED FROM BEST AVAILABLE COPY

r-4

CO

1 CD
Final Report

Project No. 9-0554
Contract No. OEC-0-70-2289 (506)

3

U S DEPARTMENT Of HEALTH,
EDUCATION I WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY 45 RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT PO,NTS OF VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATICN POSITION OR POLICY

June 1973

TIE DEVELOPMENT OF A COMPUTERIZED REGIONAL LIBRARY SYSTEM

APPENDIX 25

Frederick G. Kilgour
The Ohio College Library Center

1550 West Henderson Road

Columbus, Ohio 43220

Hillis D. Davis
Cooperative College Library Center

159 Forrest Avenue N.E.

Atlanta, Georgia 30303

APPENDICES

I. 'Instruction Manual for Catalog Production. (LI 004 423)

II. Manual for OCLC Catalog Card Production; Revised and Enlarged. Judith Hopkins.

(LI 004 423)

"II. Creation of Machine Readable Catalog Entries; An Adaptation of the "Data

Preparation Manual: MARC Editors." (LI 004 423)

IV. Cataloging on a CathodJ Ray Tube Terminal. (LI 004 423)

V. Brief Description of the Serials Control System: A Preliminary Repot:

(LI 004 424)

VI. A Preliminary Description of the OCLC Serials Control System. (LI 004 424)

,VII. Manual for Checking-In, Binding, and Claiming of Serials on a CRT TerMinal -

Draft of Preliminary Procedures. (LI 004 424)

VIII. Suggested Minimum Requirements for Serials Cataloging. (LI 004 424)

IX. OCLC Technical Processing System - A Preliminary Outline. (LI 004 424)

X. The Technical Processing System, May 1972. (LI 004 424)

XI. Recommended Standards for the Cataloging of Serials. (LI 004 424)

XII. Standards for Input Cataloging. (LI 004 424)

XIII. The Technical Processing System, August 1972. (LI 004 424)

XIV. Ohio College Library Center Annual Report, 1971/1972. (LI 004 424)

XV. Large On-Line Files of Bibliographic Data: An Efficient Design and a

Mathematical Predictor of Retrieval Behavior. P.L. Long, K.B.L. Rastogi,

J.E. Rush and J.A. Wyckoff. (Not Available EDRS)

XVI. OCLC Systems: Technical Aspects. Phillip Long. and Ohio State University

Libraries Systems. Gerry D. Guthrie. (Not Available EDRS)

XVII. Name-Title Entry Retrieval from a MARC File. Philip L. Long and Frederick G.

Kilgour. (Not Available EDRS)

XVIII. A Truncated Search Key Title Index. Philip L. Long and Frederick G. Kilgour.

(Not Available EDRS)

XIX. Title-Only Entries Retrieved by Use of Truncated Search Keys. Frederick G.

Kilgour, Philip L. Long, Eugene B. Leiderman and Alan L. Landgraf. (Not Available

EDRS)

XX. Ohio College Library Center Systems. Frederick Kilgour. (Not Available EDRS)

XXI. Evolving, Computerizing. Personalizing. Frederick Kilgour. (Not Available EDRS)

XXII. The Shared Cataloging System of the Oh.o College Library Center. Frederick

G. Kilgour, Philip L. Long, Alan L. Landgraf, and John W. Wyckoff. (Not

Available EDRS)

XXIII. Cataloging with a Computer OCLC Comes to Pennsylvanii. Robert C. Stewart.

(Not Available EDRS)

XXIV. The Ohio College Library Center Program/Subroutine Documentation; Master Data

Base Update (MDBUPD). (LI 004 425)

XXV. The Ohio College Library Center Program/Subroutine Documentation; Convert

Call Number (CNVT). (LI 004 426)

XXVI. The Ohio College Library Center Program/Subroutine Documentation; Generate

Pack Definition Tables (GENPDTS). (LI 004 427)

XXVII. The Ohio College Library Center Program/Subroutine Documentation; Catalog

Card Format Program (CCFP). (LI 004 427)

XXVIII. The Ohio College Library Center Program/Subroutine Documentation; Build Print

Tape (BPT). (LI 004 428)

i

I

I

I

I

I

I

I

I

I

THE OHIO COLLEGE LIBRARY CENTER
PRO(IRAM/FUBROUTINE DOCUMENTATION

Convert Call Number
(CNVT)

I

I

CONTENTS

Section/Page

. OVERVIEW I

II. DATA FLOW II

ill. SUMMARY OF INPUT AND OUTPUT III

Bibliographic Record 111.2

CNVT Output Record 111.14

CNVTPDTS File 111.17

IV. FUNCTIONS IV

V. GENERAL INFORMATION FLOW V

VT. SOFTWARE INTERFACE VI

VII. DESCRIPTION OF SPECIAL STORAGE AREAS,
SWITCHES, AND TABLES VII

A. Special Storgge

Format Control Word (FCW) VII.1

Profile Definition Table (PDT) VII.2

B. Tables V11.3

VIll. APPENDIX VIII

A. Operating Requirements VIII.2

B. Operating Characteristics VIII.3

C. Detailed Description of Internal
Subroutines VIII.13

D. Additional Subroutine Documentation VIII.40

E. Additional Procedure Documentation VI11.81

F. Examples VIII.88

OCLC PROGRAM DOCUMENTATION

I. Overview

CNVT is the first step in the formatting and production
of catalog cards to be sent to Members. For the online
system, CNVT has as input the System Log tape from a day's
on-line operation. There are five possible types of records
on the log tape. CNVT selects only Type 1 (produce) records
for its processing; the remaining records serve as archive
information. CNVT may also be run off-line to produce
catalog cards as requested by card input from Members. The
input for the off-line CNVT is the disk data base. The
functions of CNVT in both the on-line and off-line modes are
the same.

The primary function of CNVT is to format the call
number for each catalog card request according to the
requesting Member's pre-determined specifications. To accomp-
lish the individual format, CNVT uses a massive tree structure
of information accessed by profiles, one profile per member
holding library. Each tree structure has "leaves" which
indicate the routines within CNVT necessary to process the
call number and associated data for the Member.

Secondary functions of CNVT include formatting of some
user data and selective deletion of unnecessary data from the
Type 1 record depending on the member profile.

The output of CNVT is records on-tape which contain the
formatted call numbers, user data, and the additional data
necessary to format the catalog cards.

(CAT
FROM

II. DATA FLOW

SYS LOG

LIBRARY
CODE

PROGRAM: CNVT
TI. 1

DATA FLOW CHART A

CNVT ONLINE

1. SELECT TYPE 1 RECORDS

2. FORMAT CALL NUMBER

3. FORMAT USER DATA

4. DELETE UNNECESSARY DATA

FORMATTED CALL NO's
AND ASSOCIATED DATA
FOR CARD PRODUCTION

I
0

(CFP/

CARD
PRODUCTION
LOG

SELECT I---
CARDS

DATA

BASE

,,----_,

41

PROGRAM: CNVT
TI.

DATA FLOW CHART B

CNVT OFFLINE

1. READ SELECT CARDS FORMATTED CALL NO's
AND ASSOCIATED DATA
FOR CARD PRODUCTION

2. SELECT RECORD FROM
DATA BASE CCF)0

3. FORMAT CALL NUMBER

4. FORMAT USER DATA

5. DELETE UNNECESSARY
DATA SELECT

CARDS FOR
RECORDS
THAT WERE
SELECTED FOR
PRODUCTION

PROGRAM: CNVT

III. SUMMARY OF INPUT AND OUTPUT

ITT.?

.: me: the oho collidge lihrory center. 1314 hum id. cal coldus oho I- 43212

. ..

Record Layout

File Name BIBLIOGRAHIC DATA FILE

Record Name ARCHIVE TAPE RECORD LEADER

Record Type - () Card (V Tape () Disk () Other

IBM VARIABLE
File Organization BLK FORMAT Record Size 4130 Block Size 4130

General Description Standard leader on all archive tape records

FIELD
IILIJD NAM. AND U.LUKIFTIUN 1 PUbIllUN LENT A-H IURMAT

VARIABLE BLOCK CONTROL WORD

Logical Record Length 0-1 2 Binary

Zeros 2-3 2 Binary

RECORD TYPE CODE 4 1 Hexadecimal

X'01' - PRODUCE .

X'02' - UPDATE
X'03' - CA UPDATE
X'10' - MBD ADD
X'111 - MDB REPLACE
X'12' - MDB DELETE

DATE OF TRANSACTION 5-7 3 Unsi'ned packe
decimal, YYMMD

INSTITUTION CODE 8-11 4 EBCDIC right
ustifi 0 f

CATALOGER 12-15 4 EBCDIC lef-: ju
blank filled

d
D

illed
stifie

111.3

Record Layout (Cont)

File Name BIBLIOGRAPHIC DATA FILE

Record Name ARCHIVE TAPE RECORD LEADER

FIELD
FIELD NAME AND DESCRIPTION

l POSITION LENGTH

CLASSIFICATION: 0 or 1 = LC, 2 =

TUBE NUMBER
Logical tube number +1

"FORCE UNIT CARD" FLAG

"ADDED COPY" FLAG

RESERVED FOR OTHER CCFP FLAGS

NUMBER OF EXTRA CARDS

RESERVED

16-17

18-19

20(0)

20(1)

20(2-7)

21

22-31

2

2

1 bit

1 bit

6 bits

1

10

FORMAT

Binary

Binary

Boolean

Boolean

Zero

Binary

Zero

T .11

IBM DIAGRAMMING AND CHARTING WORMER,

Application Fr:; vs'a.',/re P4 ro Frit Dots -V: 7/ 12 peg, of
41.8smamp__AELNI 1.7 /i/ " Lf1,0,.,A, Drewn N r. /''.e/ri-A,Le

8)7E

it

3

-1

LeGICAL RE-05.R n T I PEA'd ?ER&

ATCovp Tylofdere DATEI YYmm OD
of TRAA,caerroo: (144.1.rcooo p4d4ro ofelftr4L)

rAr.sTITILTIOA, COPE (Fu-Pre, Ifistrr Tomf.rio j 214.9 FILL

CATALOGER (Enc ore, LEFT 7..srrFIEp t MANN FILL.)

O

TYPE er zirsr (1 LC
st= prwry TLS(mi.Avent +1

first AVE()

ESERvE D

r

Rese ivED

cult," tiftsporij.

x' PficilytieE

x P p,1 rt.

R'03' CA UPDATE

X' /A''' OP 8 ADD

XI/II M98 4F PLACE
X' .)_. - MDH OcLL IC

I

i

:::: the ohm college library center

ic : 1314 laninar 111. - COINIIHIS 0 11 I 0 UPI 43212

Record Layout

File Name BIBLIOGRAPHIC DATA FILE

Record Name ATRJ.T0nRAPHir pErep

Record Type - () Card () Tape (x) Disk () Other

IBM Variable
File Organization Blk Format Record Size 45-6144 Block Size 6144

General Description OCLC internal prorpss4ng format of the MAW' TT

Biblioerabhic Record. Access is either sequential or random.

FIELD
rItaJu ruirm mu, 1,L,m1rx.i.vn 'POSITION LENGTH FORMAT

(

RECORD LEADER

Logical Record Length 0-1 2 Binary

Record Status Character (MARC 2 1 EBCDIC

Manual - Page 26).

Encoding Level (MARC Manual - 3 1 EBCDIC

Page 27)

Leader Length - byte size of 4 1 Binary

leader including terminator

(X 'FD')
_

Type Index - index into-a table of 5 Upper
4 bits

Binary

a uridl Type Indicator Codes
(See Cataloging on a CRT
Terminal - Page 32). Note that
the zero entry is used.

File Name

111.6

Page 2

Record Layout (Cont)

BIBLIOGRAPHIC DATA FILE

Record Name BIBLIOGRAPHIC RECORD

FIELD NAME AND DESCRIPTION
FIELD

POSITION LENGTH FORMAT

Bibliographic Level Index - index 5 Lower Binary

into a table oftlevel codes 4 bits
(See Cataloging on a CRT
Terminal - Page 32). Note that
the zero entry is used.

Reserved 6-7 10 BitsBinary

Variable Con- rot_ Field Length - 7 Lower Binary

Word leng-Al of field between 6 bits
supplemen-: number and suffix
character in LC card number.

OCLC Number 8-11 4 Binary

Date Entered
Year 12 1 Packed*

Month 13 1 Packed*

Day 14 1 Packed*

Type of Publication Date - 15 1 EBCDIC

Description of contents of
Publication Date fields (See
MARC Manual pp. 32-34).

Publications Dates
Date #1
Date #2

16-17
18-19

Country of Publication - First two 20-21
characters of MARC field (See
MARC Manual pp. 3S, 290-318).

Illustration Code Indexes - Four 22-23
4-bit indexes into the table of
Illustration code:; (See MARC
Manual pp. 35). Note that the
zero entry is used to indicate
an invalid code was receivel
and that entry contains a
blinking blank.

* Packed data is numeric data
which haf. had the upper four
bits of ,..tc:h num-ril removed and
h,E; been 1,Aaked lwo per byte.

2 Packed*
2' Packed*

2 EBCDIC

2 Binary

Record Layout (Cont)

File Name BIBLIOGRAPHIC DATA FILE

Record Name BIBLIOGRAPHIC RECORD

Page 3

FIELD NAME AND D2SCRIPTION
FIELD

POSITION LENGTH

Form of Content Code Indexes - fou 24-25
4-bit indexes into a table of
codes describing the form of
work (See MARC Manual pp. 36 -37J.
Note that the zero entry contairs
a blinking blank to indicate an
invalid code was received.

Intellectual Level Index - index-
into a table of intellectual
level codes (See MARC Manual
pp. 36). Note the zero entry
is used to indicate that the
input code was invalid and con-
tains a blinking blank.

Format Reeroductioh Code Index -
Index into a table of codes
describing the type reproductior
if any. Note the zero entry is
used to indicate that the input
code was invalid and contains a
blinking blank.

Indicators 10 thru 15 - bit
switches to indicate the
MARC indicators described in th
MARC Reference Manual (pp. 37-
38, par. 10-15). Bit values ar

Bit 0 - REserved
1S2 - Government Pub. Ind.

3 - Conference Pub. Ind.
4 - Festschrift Ind.
5 - Index Ind.
6 - Main.Entry Ind.
7 - Function Ind.

Biography Code Index - index into
a table of biography codes (See
MARC Reference Manual pp. 33).
Note that the zero entry cont-
ains a blinUng blank to indi-
cate an invalid code was
received.

26

26

27

28

2

Upper
4 bits

Lower
4 bits

1

1

FORMAT

Binary

Binary

Binary

Binary

Binary

File Name

Record Layout (Cont)

BTPLIOGRAPHIC DATA FILE

Record Name BIBLIOGRAPHIC RECORD

Page 4

FIELD NAME AND DESCRIPTION
FIELD

Modified Record Indicator Index -
Index into a table of codes
describing the type of change.
Note that the zero entry
contains the blinking blank
character to indicate a code
was received in error. (See
MARC Manual pp. 38-39).

Catalog Source Index index into
a table of codes to describe
other sources of catalog record
(See MARC Manual - page 39.)
Note that the zero entry contai
a blinking blank to indicate an
error code was received.

POSITION ILENGTH FORMAT

29

29

Language Index - index into a tabl; 30-31
of language codes to describe
the text of the data. Although
the codes are not arranged
exactly as shown, see the manua
"Cataloging on a Cathode Ray
Tube Terminal" pp. 46-52.

LC-Card Number
Prefix 32-34
Year Part 35
Number Part 36-38
Supplement number 39

Length of 1st Author Siibstring 40-.41

The number of bytes to use for
the first author substring

Displacement of 1st Author Substri 42-43
Byte displacement to the 1st
author substring from end of
leader

* Packed data is numeric data
which has had the upper four
bits of each numeral removed
and has been packed two digits
per byte.

Upper
4 bits

Lower
4 bits

2

Binary

Binary

Binary

3 EBCDIC
1 Packed*
3 Packed*
1 EBCDIC

2 Binary

2 Binary

Record Layout (Cont)

File Narne7BLIOGRAPHIr nATA rTLP

Record Name BIBLIOGRAPHIC RrToRn

Page 5

FIELD
FIELD NAME AND DESCRIPTION

POSITION`, LENGTH FORMAT

Ler..gth of 2nd Author Substring 44-45

46-47

2

2

Binary

Binary

The number of, bytes to use for
the second author substring.

Displacement of 2nd Author
Substring

Byte displacement to the 2nd
author substring from end of
leader

Length of Title Substring 48-49 2 Binary
The number of bytes to use for
the title substring.

Displacement to Title Substring 50-51 2 Binary
The byte displacement to the
title substring from the end of
the leader.

Holdings File Pointer Word 52-55 4 Binary
Pointer to holdings list.

ilt Institutional Holdings Bits' 56 -7.1 16 Binary
Bit switches indicating holdings
for an institution. A one
indicates holdings, a zero
indicates no holdings.

LC Suffix Variable Varia
ble

-9CDIC
A variable length character
string which may be absent.
Displacement to suffix equal to
40 + 4*n where n equals the
binary value of bits 2-7 of byte
#7 of leader. Length of suffix
is equal to the leader length,
byte #4, minus the displacement
to the suffix minus one.

Leader Terminator Variable 1 Binary
X "FD" that follows the suffix
to indicate the end of the
leader.

ITT.10

Record Layout (Cont)

File Name BIBLIOGRAPHIC DATA FILE.

Record Name BIBLIOGAPHIC RECORD

.Page 6

FIELD NAME AND DESCRIPTION
FIELD

POSITION !LENGTH FOR; AT

VARIABLE FIELDS

The following fields of the record
are repeated for as many times as
there are bib?iographic elements.
The fields are variable in the
data that -they contain and the
length of each data item. The
elements have the following format;

Tag - element field descriptor 0-1 **
number

Element Length - length of 2-3 **
element including tag.

Subfields and Indicators - the 4-n **
remainder of the element
fields are identical to the
MARC format with the
exception that the '$a'
subfield code is deleted if
this field is present and the
data begins immediately
following the indicators.

'Ilhe code is a X'FD' for ena o
subfield and X'FE' for end of
record.

** These value are the relative
positions within the variabl
fields.

* Packed data is numeric data
which has had the upper four
bits of each numeral removed
and has !been packed two
digits per byte.

f

2

2

Binary

Binary

EBCDIC

ITT.II

IBM DIAGRAMMING AND CHARTING WORRSHEIT

,.;) Dote PI ./3/ / Page

Drawn sy

s to Ii, I. 1.

1-061 COI- ReCL P1/41) 1-r_4((.7 TN lic_c(cD S TA -rt:5 t MC ci.) x^/ 6
t-E V E L.

71"1"- - j-LA16"c,F L.dout...! Jos,CL.
*4 F '

1--/ (.1- i ("La '"-1 °
I :71:141)Mi G.

ZA.' 7) r:X EL,c, ito,
i2 E.- S E rz V a D 1 Weil) i_c."1.:-//

icfcr.ttg-DS at- _I
(lo 8rs) i I 41,r1h-E,,W0

0 c LC RacoRb Nu0113E

I 7,117
EAr

g;IV f21.=
< ED) I

g- E-

nic,NT

24
-DATE 2 OA, ic))

-TYPE F
P081Satir z On/

AT-

g

I-7)ArrE (pile tc-eCIO)
1

ao aol,
[Como my CF "Pot, L ..r. Q AT xo A/ ri.L.usTR4T sow, CT)bes TAiroc)(01

Cl (A-0 CNA a At -TEfzS) it 1 4- a_ It 0

e6.1o5nLOC3WZADPE

V
& A P.

i)
Dco

OT I
E 1f

OA 1/ 0C
Ate f 1-ArlGif 1E CODE SNZE)(

IL. C 4,1) Ni.urt 136 A LNA iZEFL7C

"IS
CARD Nimack

YEAR.' !my (Ficker)

1... C. C=ARD Nom 8 " AlvInbeRls
C fin(0)

rt C. CI44D

5oPPLOolf.4 T NaniaElt

r0.00.04
0 r Via s-1' Avrook iTc -D.spi-wce.riciv r 7'0 pits

3v13S-bt c^;(, %Iv t lc s Aor Wit suasikovc., rwm CID of 4..or

16.
C

50 73 k io./(1

Lek)Ai THeR al, -6 Is.s DLACEolem T Scovs
fi //LS Avri4te. (Tam WD OF LTA)

I

r

1 I .

IBM DIAGRAMMING AND CHARTING WORKSHEET

Application (A t ia Cr: At.'nel Zeta /V Page ni of
140011410g Drown ay 71 F (

LEAle.TH t' F TITLE e- L r TO Tr rC
tt En, C F

I f-101-1540./65 Fs LE -pcz-,v TL

C.

wok) # L. OF TAJsr.x-rorao/JAL. yiviba-AiG 5-4.4) z re ALS

worth It a.

woR1) 4-3

6g

woozb gt

V4reve bi-e. -DATA IA, ca... BE TNSEkreb HE kr, TO 4552-'57-
IN SivTELNAL 152CC C-55.IniCi AS 7-A-E NEED ART5E5.
ram. AA/meek O r 1.4-;0"0:15 ZE'ru./Elit) 1-C 5.FCIZX An/6
StTPLE WIEn17 r0 izevi-ecre Tatra -7 OF 871.61.7
OF LEADek

ThE. SoF f-X1(rS Till kilsr F.rELI THE 1-erlb&SINCE tT ZS VA as A aLe TA, 14:Al et 171 ANY M.ly C Em/
13 s alivsErvr. Tit& LE6174 To THE
L.SA De a. LEP.% E1TH C Byre *4) msn/us yo mriv s
rico ft 11 ou-5 74E. V A 1...0t ZI-TS a-7 cc -sire.,E

oNa. THE ADDiteSZ, OF THE 5-t.)Fr--x 64'4./q
"TO 1111- Lew eat+ CC TIME Fix(-D LeftDc--i? Clio) Pf LI% .5
THE 1110,44.1 LVE OF airs o F ZriTE ?
i-t.7JR,

I

I I T.7 3

IBM DIAGRAMMING AND CHARTING WORKSHEET

Application .4 I, t' 2, A L,e, e ?Au ;. iit/ 2 Page

Proceduto Drown Sy

IN G G. 1.. la ;it

Low 6 INC Lr r).DC fiet H r 1 L
F 4 et bt, /1l11 14,1; /1n:13 111 nte...D.Y.47-CLy
ro 111 L3 (,()_s F-.2" E. L._ 1.,) (C".. Lc' Foie 7 IJF_

RS7 t" SC A;7). EncH 'fa .rN4 7E-6 Sy h .2)6 z 76/-e

C `FE' P r THL ui :7 E tC l.? C. Al . 04
PIL Ott) C Akc - 11,,t,./f# r # 7 if

J/s,'E, FOLD LIS f:xceP73001,S

IL 0

.11

1. --rgE -S 1*4/"R...y
-7-/M Fly :CD L&V i*/ is 3A) AM a s./

3. .7111E- F 4,1- zs T TA: C
7/fr: 12c c of 4, r piz cscn)r.- "z"-F

(FC.)) ctOes "'e ntmg,Z47 4 70->'
Val i1-0 KJ 7tf Tn'a7c,a 7 0 /Lt..' 71k, C Plthui C /C,c.

-A Z4474 ct 4) 4. Iike S.,S - -"HE
tc erAr-Ak, TAr DA %;f rs g`nu-

4/ TOE CItA,tAr7c7R X CPC R.6 Pg." Cr C.;
E (s4

I -/-4 (4?.r/vfi Ry

A 74 4%.
I TA:1)T e.ArcIZ / Tpqa C 4-mk_

e -1* e)ZRTi). 4 .7:)fi rAl

LE") 67-4 O F rzE
ITA1C_ i_rt) TACK f. "te-tzin rn/A7at

TC.R.nt In;n70 R
X4FTP

/ to F. e.-7)

ions,. Arto7,

C.-E

TIT.14

I

I
ne: the oho college lib[ary Hotel'

1314 honer rd. columbus oho 43212
.

Record Layout

File Name CNVT OUTPUT RECORD

Record Name

Record Type - () Card (X) Tape () Disk () Other

File Organization GEQUENTIALRecord SizeL4096 Block Size

General Description

UNBLOCKED

FIELD
HELL) ',gni'', nnu vLat-nirliva

POSITION LENGTH FORMAT

RECORD LEADER

PDT Number 0-1 2 Binary

Unit Card Indicator 2 (bit 0) 1 bit Binary
.

Added Copy Indicator 2(bit 1) 1 bit Binary

Reserved 2(bits
2-7) 6 bits

Number of Extra Cards 3 1 Binary

OCLC Number 4-7 4 Binary

LC Card Number 8-19 12 EBCDIC

Reserved 20-27 8 Binary

hanguage Code Index 28-29 2 Binary

(1

;1111V,

POT Number

11.

TI .15

--unit card indicator
--added copy indicator

I

bits 7 -7 T# of
reserved extra cards i

11...

OCLC Record Number

8

LC Card Number

IC Card Number

lb

LC Card Number

20

IReserved

4

Reserved

28

Language Code Tndex

PoilNAM: CNIVT

Following, the loader arc the tag fields. These fields
ar- variable in length and immediately follow the previous
i21d (or leader for the first element). Each is terminated
a delimiter (S'FD' or X' FL' for the last.element). They

ollow the basic MARC II format with the following exceptions:

I. The tag itself is Binary
2. The field length is Binary
3. #P (X'PC97'), tB (X'FC82'), or tC (X'FC83') within

the call number field are used to indicate that a
stamp is to be placed in that position relative
to the call number.

0

1

Length of Field including
TAG (Binary tag and terminator

5 6

Iindiyator

1

indicator
2

DATA
X'FC' ' I.D. + DATA

.

.'l Field terminator
X'FD'

...

I
TAG ` ATA

X'FE' RECORD
Terminator

....)

..>

)
..),
S

I

.

...
0".1!3 Ii'd[or; mut.

a 1314 honoof Ed. coludus oho tua 43212

File Nam2

Record Layout

CNTITDTS

Record Name MLA, BLOCK #1

Record Type - () Card () Tape (x) Disk () Other

File Organization KEYED Record Size2S6 WOREDlock Size26 140::DS

Gener-,1 Description Block fil of TBLA is prefixed by the key to TBLB

and the number of entries in TBLA.

FIELD
tliA417 NAME !INF ULJUKLFTIUN FUSIIIUN LUG 1H IORMAI

KEY TO TBLII 1-2 2 BINARY

NO. LNTRIES IN TBLA 3-4 2 BINARY

TPLA, LNTRY #1 5-8 4 EBCDIC

.

. .

TBLA, ENTRY #,:i5 1021-1024 4 EBCDIC

*: iii""110 Cni nif3111 cep to I'

a 1314 !minor rd. COIUMINS 43212
Record Layout

File Name

Record Name

CNVTITTS

TBLA, BLOCK PN

Record Type - () Card () Tape (x) Disk () Other

File Organization KEYED Record Sizelldiock Size9ss wnRns

General Description A normal block of_ TBLA consists strintly of

256 library code entries.

FIELD
IILLU NAM ANV 1_,LowsiriluN P06.1.11UN LENGIII tURMAT

TBLA,

.

TBLA,

ENTRY

ENTRY

#256*

#(511*

KEY#

KEY/0 +
KEY #-1

1-4

.

1021-1024

4

.

.

.

4

EBCDIC

EBCDIC

tho shIn ii1tiu ihi
. 1314 hopeou E-s oho 12. 43212

Record Layout

File Name CNVTPDTS

Record Name TBLB, BLOCK #1

Record Type - () Card () Tape (X) Disk () Other

File Organization KEYED Record Size 256 WORt8lock Size 256 WORDS

Genera]. Description Block #1 of TBLB is prefixed by the key to

PDTTBL. The halfword TBLB entries follow the key.

FIELD
I1LLU NAM. AND Vt,Z,LAIVIlVil I pooraim L,Eii-GJH FORMAT

KEY TO PDTTBL 1-2 2 BINARY

TBLB, ENTRY, #1 3-4 2 BINARY

TBLB, ENTRY, #511 1023-1024 2 BINARY

.

.

a a
a c

.

1314 !aural rd. Es coldus oho 13.1 43212
. .

th [3, ohr collrulrg IC3 [3 ry corito I.

File Name

Record Layout

CNVTPDTS

Record Name TBLB, BLOCK #N

Record Type - () Card () Tape (X) Disk () Other

File Organization KEYED Record Size256 WORDBlock Size256 WORDS

II
General Description A normal block of TBLB consists strictly of

512 halfword index entries to PDTTBL

FIELD
IILLli IWJ1L ANL VLJLAIrlIUN POSITION traGIE YORMAT

TBLB, ENTRY #512* KEY# 1-2 2 BINARY

.

TBLB, ENTRY #(1023* KEY#) +
KEY#-1

1023-1024 2 BINARY

see: trio L:!no lihrny CORM'..
1311 lopootdr rd. ri COIRMS Ohl0 mil 43212

.

Record Layout

File Name CNVTPDTS

Record Name PDTTBL, BLOCK #U

Record Type - () Card () Tape (x) Disk () Other

File Organization KEYED Record Size256 _30111ock Size256 worms

General Description A hlook of PrWTRI, cnntaing A uAnizblp nflmbor

of PDT subtables.

FIELD
IILLU NAM, A1' 1J La....A.AirlIUN

' POSITION-- LENGTH FORMAT

LIB #1 SUBTABLE

Cycle 1-2 2 Binary
Brown 3-4 2 Binary
Blue 5-6 2 Binary
Yellow 7-8 2 Binary
Red 9-10 2 Binary
Green 11-12 2 Binary
Lit 13-14 2 Binary
PDT# 15-16 2 Binary
Oversize# 17-18 2 Binary
Tag Handler #1 21-24 4 Binary

. .

Tag Handler #K K-K+4 4 Binary
End of Table Indicator K+5.K+6 2 -1
No. of Parameters (L) K+7 K+8 2 Binary
Parameters K+9-K+9+2L-1 2L Binary

1V.!

IV. FUNCTIONS

I IWGRAM: CNVT

CNVT reads any library code cards that are input and
builds the table LIBSIN to control production of catalog cards
for only these MJllbors. II no library code cards are input,
LIBSIN is initialized with its number of entries equal to zero.
CNVT then begins normal processing. It reads a record from the
daily system log tape and interrogates the record type in the
archive record leader. If the record type is 01, the total
number of selects is incremented by one and card production
begins. If the record is a type other than 01, the next record

read.

The Library of Congress card number is picked up from
the selected record and is stored in a location called 'LASTLCCN'.
The institution code is stored in a location called 'LIB'.

A Link Directory is built by branching to the program
'LINK'. In thi, directory there are several tables. 'LNKTAG'
is d table of tags; 'LNKBA' is a corresponding table of byte
addresses and lengths of each of these fields. Therefore, in
order to find the byte address and length of any field, a search
is performed on the table 'LNKTAG' until the tag is found. This
search will produce an index into the table 'LNKBA', where the
byte address and the length of that field are to be found.

After the Link Directory has been built, the 049 field
is found. Anything within brackets in this field indicates
a stamp and is moved to the location 'STAMP'. The first three
unbracketed characters indicate the cataloging library and are
moved to the location 'LIB'. If there is no 049 field, the
insititution code which was previously stored at 'LIB' is used
as the cataloging source. If this library code is not in the
list of libraries to be processed, in 'cable 'LIBSIN', the
record is counted as rejected and the next record is read. If
there are zero entries in LIBSIN, all libraries may be processed.

A table, called 'TBLA', of default tag processors is
built. Each tag with its corresponding processor is pulled from

:,tack and stored in the table. Then, the options in the
program 'READPDT's' are read. If there are any special tag
options indicated, the processor 's picked up from the table
'TBLAOPTS'. 'TBLA' is modified base: on this information from
'READPDT's' and the two processors are exchanged. Each field
is then processed according to these 'TBLA' options. If the
field is to be deleted, its entry in the Link Directory is
deleted.

The root number is retrieved from READPDTS and this is
used as an index into 'NODETBL' to find the appropriate tree.
The first element in the argument field of the 'NODE' instruction
indicates the number of entries in the tree and the second

TOGRAM: CNVT

element indicates where to start getting the entries. These
entries are stored in the stick 'CSTK'. If there is a 'NODE'
in the tree, it is expanded and these entries replace the 'NODE'
in the stick. If there is A 'TEST' in the tree, the loop
switch i:, tested. For each 'TEST', there are two alternative
nEAF's or NOhE':,. Ff the switch ha:, been set, the first alter-
native is pushed into the stack. if the switch is not set, the
-econd alternative is pushed into the stack.

Each 'LEAF'' entry in the stack is processed in sequence
utnil a 'NODE' or 'TEST' i.s encountered, at which time the
appropriate replacement routines are pushed into the stack.

The first number in the argument field of the 'LEAF' is
an index into the table of routines called. 'EXUTBL', where the
address of the routine is loaded into R7. For the routines
3:U001 - 3:(087, the address of the Format Control Word (FCW)
is also loaded into R6 at this time.

The second number in the argument field of the 'LEAF' is
used as an indicator within the routine and is always passed
to the routine in R3.

A branch is performed through R7 to each routine in the
stack in sequence. :Jpon return from the routine, all registers
are cleared and the address of the next routine is retrieved from
the table. When the stack is empty, the next record is read
and processed.

In order to save the contents of a register when going from
one routine to another, its contents are stored in a core image
location called 'REGx + 16' where 'x' is the register number.
Through most of the processing R1, R2, and R3 are saved in this
manner. R1 is used as an index to the temporary call number
field; R2 has the complement of the call number width; and R3 has
the byte address of the source of the unformatted record.

The call number formating routines basically take each
element, one at a time, format it and move it to an area called
'090T' which is a temporary call number field. From here, it is
moved in its completed form, along with stamps and oversize
symbols, if any, to an area called 'FIELD2'. The elements of
the call number and their corresponding numbers are:

1) LC alpha prefix AA
2) Classification-numeric portion NNN
:4) Classification-decimal portion .NN
4) rirst date NNNNA
5) First cutter ANN
6) :second date NNNNA
7) Second cutter ANN

I

ROGRAM:
IV.

The sequence of the routines in the tree follows a
pattern. The first routine is always a set-up routine. If
any element or elements are to be suppressed, the routine to
do this must precede the routine to process the suppressed
element. if any stamp or symbol is to go in the left margin,

ithe call number width must be decremented before any element is
processed.

If no elements are to be suppressed and nothing is to
go in the left margin, the next seven routines, after the
initial set-up, will process each element, one at a time.
For a Dewey call number, the routine to process the first
element is absent.

The next routine will usually be 3:U008 which will process
any other elements.

The next routines after the elements have been formatted,
are the routines to set up and move the user data to 'FIELD2'.
and link FIELD2 to the call number field. The routines to create
extra cards are also found here. The next set of routines
determine the arrangement of the three stamps and the oversize
symbol in relation to the call number. These routines move
the stamps, the symbols, and the call number to 'FIELD2' in the
order in which they will appear on the card.

The last four routines are the same for every set-up.
The first routine, 5:U999, provides for holdings. The last
three will link 'FIELD2' to the rest of the record (4:U999);
provide for the card to be produced (X:U000); and log it as
having been selected (X;U001).

For the off-line CNVT, the functions arc basically
the same. the table LIBSIN is built from any library code
cards input. CNVT then reads a member select card and accesses
the disk data base for the records necessary for card pro-
duction. The member select cards are _color keyed depending
on their function. A description of the color codes select
card input is given in Appendix B, Operating Characteristics.

After the select card is read and the records for
card production are obtained from the data base, card production
proceeds the same as for the online system. As each set of
cards is produced by the offline system, a card is punched
which contains the unpacked Library of Congress card number and
the library code. These cards are used to eliminate from
the input cards, those cards which were selected for production.

V . 1

. GENERAL INFORMATION FLOW

11)1. tC ; A Sit
rt /71

",
A

Ll -kL;t? JAW.-
7t' A I #1,,
let1;(11 1)

I),j,
A JJ

I) ,./ds-'1)
C JCL 4/).-,--14L

A'I t'D

t 41)

1

H6ki L. 4. : eEddif7r)
ei '41) .ek,CCA'D
i /et //) ..E,I. rill %
Ti? l't

e ; I zA-
7-, (4. Zi

A C _7 'LW
le A: V

(,-e
,e4t.'#)t.: C

Tit'
1.7

V . 2

()fut.(',Li, rt
tf iti

I); ,)L(. -r

61_ r r
On1iii

tir)

kiCki 0 I-

L Ad rot
APP.(' urk' 3 rl -7-L..

E ri z-

j-

7 c

!S ti
E tk)

/C_LI)1

E Kr
ry

Fit) f
10<-r-ic."

V.3

4% up
i)i)A' I- `.`

PO T-nt2 E rill%
Ku

Add -n, T

Dac #26 o16_ft, r
(N AA:,

PCU-IV re e_ -ro
,

'c 6
irl

Zti
IOC C y

*C

V .

3: M 3 : Utif X1 - 3 : 1.10 X7

64- r LC
Lt6SC t _C t) r

r A.11).1 (
Lita,(-14 VC t:i a-,
/At& tt- ti 1. L-

A_

r eq.&

A.; Li

D

g(-r LIP THE
1.100k- ("F
rNE (ri k.

t)I PC 02-

4.0Z k r1 A..' 19

Or-it i. Afti met ei
0 /4! /71 /-1 7-/ A-14!

PCt4 1

3: UG1XX

AIL/

tteteA%s0 VOA' tiled
CtFnnAir

rdE
z_hdri t

PC Ce Ef:6 E 40/
co ki xiu
-rt.(le At

Fr-7-e--.7" SLAII:TEH

0 2:711.)txr C PM
-rdr_ -1s/Pl ('F

t-'-',0 _t ILI,-

Al6VE TNE-
Putke'rr).47-1-t-4)

CL t 'PM) 7" -rts
01E- CA L1-41- '1/0 .
rt. /RP td E -It

v4i
(

X X

, c:

-rLk
Ptr. ri4)

1)L C'KE 0)C
14 k i. IV A inP,E

LCIOTO -r
r

)--t

C
I fit

r; 6,4 I.

440Pit'L
PL-, pp

n)
Lc

7

3: UC4418

: XC4 XX

V . 6

eXocc.ei:
CLEIACCr,,

01CY API1,

MouE
E[-t JErt.)

lukt/t)a
elk- A

Cl=Y VALUE
c^r- 'X X'

F-)i)T414

Poe. tioc-nV.S
.TA.1 e rii

F7at'ou.7

RSEUDn-
c'T)JMPmP

4: UfeXX

V . 7

VE3

SC -T t P
Yls pAlc 6 e f.6

-of

Vic+, LAP

2-A.JDX e t 2 k)
r et. m
i414DP XI

MOVE WA FrE

AALP

Tp ' FS E

5: LIOXX

V.8

(^,t- 7-
I/ -iii-Li C C F

fsc--r Ltil
tt,,,t g., Sri 71-1
ritir(f i1J1-171-1',!-

tytc 0 r Lt =L e
DR-1-14

1- lk* ci' Mr) r-r I 4

7() ir.rL L1)..1

OS I ROXX

T L P

PI-V-'41)1E

1141tAle 1. Ai

OJEes5

C,IYMAOL,

V .9

OSIUOXX

6-E -r Uflu.46

K X

No

XX;

I

egeo\
OLA.,5_,,utime3t

OF &OK

e Er tLP
ez(r14-7 ttit).4)

uo .D-04 e.F

door

4CC, roe,
ovte61n.

co

7-4/41v
avyirwdek3E-

diva off'
itiaMejf,C

PROGRAM: CNVT
VI .1

VI. SOFTWARE INTERFACE

A. Linkage - Background linkage with OBM

B. Parameter List Description - none

C. Return Codes - none

D. Other Entry Points - none

E. OCLC Subroutines Referenced -

READPDT (Alternate EP, READPDT1)

NODETBL

CBIEB

READSC

PUNCHSC (Alternate EP, CLOSESC)

LOGMSG

READMAST

TAPEIO

FMTREC

TAPEIO

LINK (Alternate EP's, LINKDLT, LINKINST)

LCCN000 (Alternate EP's, LCCN000B, LCCNOOOD)

F. OCLC Procedures Referenced

WRTMSG

WRTSELD

WRTMISS

WRTEJECT

PUNCHS LD

NOTE

ATB L

VII.1
PROGRAM: CNVT

VII, DESCRIPTION OF SPECIAL STORAGE AREAS, SWITCHES, AND TABLES

A. Special Storage

FORMAT CONTROI, WOR11 (FCW) - a word defined for eachof the different ways an element or a Library
of Congress call number may be formatted on a cata-
log card. Provides a mask to direct the formatting
of the LC call number. A sample FCW follows:

FCW025 FCW XUT00:2,XUTM1:2,2,5,3,0,2,0
with each field comprised of the following
number of bits:

8,8,2,6,2,2,2,2

The first 8 bits are an index into UTOOTBL to
determine which 'UTOO' move routine to use.

The second 8 bits serve as an index into the
same table 'UTOOTBL' to determine which 'UTM1'
move routine to use. The next 2 bits indicate
whether or not this element must be present.

=2 - - - need not be present
=3 - - - must be present

The next 6 bits give the element number of the
call number.
The next 8 bits (4 bytes) determine the follow-
ing options:

Bits 0-1 00 NOOP
01 Start a new line if previous

element was 4 or 6
10 NOOP
11 Start a new line

Bits 2-3 00 NOOP
01 Supply a blank
10 Supply a decimal
11 Supply a new line and a blank

if the element will not fit
on previous line

Bits 4-5 00 use UTOO Routine (Move)
01 if blank first, use UTM1

Routine (delete)
10 if decimal first, use UTM1

Routine (delete)
11 if blank or decimal first,

use UTM1 routine

ROUTINE: CNVT
VII.2

Bits 6-7 00 NOOP
01 NOOP
17 NOOP
11 Force next element to new line

These 8 control Bits are processed in the following
sections of the routine 3:UOXX respectively; PH1,
PH2, PH3, and PH4.

Therefore, for the FCW in the example, the element
of the call number would be processed as follows:
It would use the second UTOO move routine and the
second UTM1 move routine. This is element number
5 (first cutter) and it need not be present. This
element will start a new line, and if it begins
with a decimal, the decimal will be deleted.

PROFILE DEFINITION TABLE (PDT) - a table defined for

each member holding library which describes that libr-
ary'F specifications for formatting the call number
and formatting or deleting user data. The items of
information in a PDT include

1. A three digit holding library code.
2. A PDT number which is used by the following

format program in the processing sequence (CCFP).
3. The cycling period, which is the number of

weeks the data base will be searched for a
Library of Congress Card Number before the
request is returned to =the user (offline
system only).

4. A table of indexes into the roots of the
table NODETBL, one halfword for each color-
coded card (see CNVT - Appendix B, OPERATING
CHARACTERISTICS, Parameter Cards Required).
In the offline mode, the index in the color
branch table indicated by the color code on
the inputrequest cards is used for process-
ing. For online processing, the index for
a blue card is always used.

5. A table of tag numbers and the number of a
special processor for each tag.

6. The call number width
7. The number of the oversize routine for this

library.
8. Any parameters needed for processing this

holding library including oversize parameters
and parameters for specific internal sub-
routines.

The PDT's are defined in three tables on a direct
access device. The tables are generated by the
programs. CNVTPDTS, and accessed in CNVT by the
subroutine READPDT.

t

(

PROGRAM: CNVT
VII. 3

R. Specill -',wit,-hes

None

C. Tables

OS1T - An indexable table of oversize routines.
The index into the table is REC.5 which is the
number of the routine picked up from the program
'READPDT's'. A branch is taken from OSIT to the
appropriate oversize routine.

EXUTBL - An indexable table of routines. The
index into the table is R2 which is the first
entry in the argument field of the 'LEAF' in-
struction. For the routines 3:U0X1 - 3:U0X7,
the byte address of the format control word
(FCW) is loaded into R6 and the address of the
routine, 3:U0XX, which will format each element
is loaded into R7. The instruction: B 0, R7
will effectively cause the processing program
to continue at the appropriate routine.

OSIS - A table of oversize symbols. Each symbol
is identified by number. The first byte of
each of the fields is the length in bytes of the
syrftbol +5 to account for 2 bytes for the subfield
code (FC81), 1 byte for the end of field delimiter
(FD), and 2 bytes for the sort skip characters on
either end of the symbol-[0 (zero)].

TBLA - A table of default tag processors. The
default processors are pushed into a stack called
' TBLASTK'. 'ITBL' is used to pick up the tag
number and the processor in 'TBLA'. After the
PDT's have been read, any tag that is to have a
special processor is replaced in 'TBLASTK' and
all the processors are put back into TBLA.
TBLASTK1 and TBLASTK2 are used as stack pointer
doublewords. #1 is used to fill up the stack;
#2 is used to empty the stack. For each entry
in TBLA, the argument field contains the tag
number followed by the address of the routine
required to process that field.

TBLAOPTS - A table of special tag handlers. The
tag number and the index into this table are picked
up from,'READPDTS'. These are the processors which
will replace the entries in TBLA.

STAMPS - A table of stamps, each of which is set
up in the L-;ame manner as entries for the table
'OSIS'.

VII.4 PROGRAM: CNVT

STOPLIST - An alphabetical list of words and
abbreviations. It is used to reduce the
cataloging source field to 22 characters by
abbreviating commonly used words and phrases.

CALL NUMBER BREAKDOWN CONTROL WORD (BRKCW) a word defined

for each way a call number may be set up for formatting.
BRKCW provides parameters for the call number set-up
routine (3:U000). A sample BRKCW is:

BRKCW 1,45,1

where each field is composed of the following number
of bits:

8,8,16

The first 8 bits in the example devote the type of call
number

0 - L.C. c &1 number
1 - Dewey call number
2 - Medical library call number

The next 8 bits are the call number length of first line.

0 - default to CNWIDTH
7 - Dewey, short first line

45 - long first line

The final 16 bits are an index to .a brance table to
entry points in the call number parse subroutine LCCN405

0 - LCCN000
1 - LCCN000D
2 - LCCN000B

In the example a set-up fora Dewey call number with
a long first line is desired. The entry point in
LCCN000 is to be LCCN000D.

VIII. APPENDIX

7----,---'

PROGRAM: CNVT
VIII.2

APPENDIX A

OPERATING REQUIREMENTS

1. Computer - Xerox Sigma 5

2. I/O Devices - Two 800-BPI tape drives, line
printer, card reader/punch

3. Operating System - RBM/OBM

4. Execution Time - average 10 minutes clock

5. Run schedule - daily

6. Job Control Language

a. ONLINE

....."--"'

! JOB OCLC,CP
! RUN BP,IMG002A El
! PAU - - MOUNT PRINT TAPE ON 'o81', RING IN
RUN BP,IMG002A Fl
RUN BP,ONCNVT

A
j Library Codes (optional)

! FIN

b. oFFLINE

! JOB OCLC,CP
! PAU --EAC -...

! PAU --SYC
! ATT
! RADEIT
! ALLOT (FILE,D3,SCARD), (FSIZE,1000),

(FORMAT,C)
ASS (F:SIN,CR)

! ASS (F:SOUT,D3,SCARD)
FOOL1

! SORT F,80,A,12,3,A,W1,W2,A19,3,
A,19,1,A,15,4,A,21,1,A,20,1

ISELECT CARDS

PAU RUDY CNVT OUTPUT TAPE ON Tl
! RUN BP,CNVT

PROGRAM: CNVT
VIII.3

APPENDIX B

OPERATING CHARACTERISTICS

1. CONSOLE MESSAGES
!!PAU -- MOUNT PRINT TAPE ON '081', RING IN

RESPONSE: Mount tane as directed

2. PROGRAMMED ABNORMAL COMPLETION - CNVT will terminate
abnormally via a

CAL1,9 3

instruction under the following conditions. The
message printed out to signal the abort is included
in each case.

MESSAGE REASON

'***CNVT CONTROL CARD ERROR-- Three possible reasons
CHECK DECK' 1. Table size is negative

2. Control card read error
3. Exceeded table length

'E3 DATA BASE READ ERROR' Unable to read data
'*****PROGRAM ABORTED***' base record

'E8 UNABLE TO WRITE FORMATTED Unable to write on
RECORD' output tape.

'E18 NODE TABLE ERROR'
'*****PROGRAM ABORTED***'

Either less than two
branches or more than
thirteen branches were
found for a single node.

'El9 CONTROL STACK OVERFLOW' Control stack has over-
'*****PROGRAM ABORTED***' flow condition.

3. DIAGNOSTICS

MESSAGE ACTION

E2 SELECT CARD READ ERROR Card is counted as re-
jected.

E3 DATA BASE READ ERROR

E4 PDT READ ERROR

E5 UNABLE TO LINK FIELDS

E6 UNLISTED FIELD TAG

Program is aborted.

Select card is rejected

Select card is rejected

Select card is rejected

MESSAGE

E7 UNABLE TO
RECORD

E8 UNABLE TO
RECORD

VIII.4

BUILD FORMATTED

WRITE FORMATTED

W9 EOT ON FMT OUTPUT TAPE

El0 ILLEGAL TAG IN DATA BASE
RECORD

*****PROGRAM ABORTED***

W12 OUTPUT FMT TAPE WRITE
PROT

W14 **CAN'T DO**

W15 -ILLEGAL COLOR CODE

W16 INVALID 050 INDICATOR

W17 IMPOSSIBLE TO FORMAT 050
FIELD

VT STAT SUMMARY

VT NORMAL END

E18 NODE/TABLE ERROR

E19 CONTROL STACK OVERFLOW

** CNVT CONTROL CARD
ERROR--CHECK DECK

PROGRAM: CNVT

ACTION

Select record rejected

Program has aborted

Go to end of file routine

Select record rejected

Program has been aborted

A retry is initiated

Select record missing;
counted as rejected

Select record rejected

Select record rejected

Program has aborted

Program has aborted

Check input cards for
possible errors

PROGRAM: CNVT
VIII.5

4. PARAMETER CARDS REQUIRED

I

VIII.6

PARAMETER CARD DESCRIPTION
(ONELINE OR OFFLINE)

F.:: the oho college library cute!.
i:: 1314 Impear Ed. columbus oho 43212

Record Layout

File Name CNVT CONTROL CARD INPUT

Record Name CNVT CONTROL CARD

Record Type - (X) Card () Tape () Disk () Cther

File OrganizationSequential Record Size 80 Block SizeUNBLOCKED

General Description Control cards contain two-digit library codes

to control selection of records for card _production. Card

input to CNVT is optional.

FIELD
tILLJU NAM AND ULJURIrTION POSITION LENGTH 1-0KMAT

LIBRARY CODE 1 1-2 2 EBCDIC

LIBRARY CODE 2 3-4 2 EBCDIC

LIBRARY CODE n n-n+1 2 EBCDIC

I

I

I

I

VIII.?
PARAMETER CARD DESCRIPTION

(OFFLINE)

s55.5. : the oho college library center
.

..
a. 1314 loonear rd. - columbus oho 43212

..

Record Layout

File Name SELECT CARD INPUT

Record Name SELECT CARD

Record Type - ()0 Card () Tape () Disk () Other

File Organizatior6eauential Record Size 80 Block SizeUNBLOCKED

General Description Select cards are input to CNVT OFFLINE to

initiate production of sets of catalog cards by Library of

Congress card numbers.

FIELDriLLal minx, mu, in,awv.iriivill
FUSITION LENbni YORMAT

L.C. CARD NUMBER
1-3
4-11 8

BLANK
EBCDIC

HOLDING LIBRARY CODE 12-14 3 EBCDIC
15-18 BLANK

COLOR CODE* '9-19 1 EBCDIC
20-21 BLANK

WEEK CODE 22-22 1 EBCDIC
23-25 BLANK

0-8-2 PUNCH DENOTES FIRST 26-26
VARIABLE LENGTH FIELD

+ DENOTES EXTRA CARD
COPIES DESIRED

'$' BLANK DENOTES END OF CARD

VITI.8

SELECT CARD (cont.)

PROGRAM: CNVT

* Each user input card is color keyed as to its function.

Color

Brown

Code

1

Function

Input modifications to LC
descriptive cataloging

Orange 2 Input holding statements

Blue 3 Request cards with LC
call numbers

Yellow 4 Request cards with local
call numbers

Red 5 Request unit card with Dewey
class number

Green 6 Request unit card with LC
call number

Green Lit 7 Request unit card with
alternate LC call number
or class number

Beginning in column 27 of the select card are a series
of variable length fields. Each field is preceded by a
special character which indicates what type of data follows.
The fields are delimited by a 0-8-2 ',Inch. The last field is
followed by a vertical bar (f) indic ting the end of the
select card. If more than one card is required, the data
may be continued in column 1 of succeeding cards.

0 1

IINDICATOR [DATA 1 f-05i ginF eRRD

INDICATOR TYPE OF FIELD

NON-PDT STAMP
11-PUNCH COPIES

USER DATA
CALL NUMBER *

* The call number appears on the select card formatted as the
user requires it on the finished catalog card. Tht punctuation
desired must be included. A new line indicator (-1) must also
be included before the first character of each new line of the
call number.

5. EXAMPLE OF OUTPUT

I

VIII.9

APPENDIX B

PROGRAM: CNVT

VIII.10
OFFLINE CNVT OUTPUT

the ohio college Mum center
1314 blow id. - coluffilths ohio 43212

Record Layout

File Name CNVT PUNCHED OUTPUT

Record Name CARD SELECTED FOR PRODUCTION

Record Type - ()) Card () Tape () Disk () Other

File Organization SEQUENTIAL Record Size gp

General Description A card entr of sixteen

Block Size UNBLOCKED

I

4nput select card for which catalog cards are produced.

FIELD
FIELD NAME AND DESUKIVIIUN FUSIIION LENGJH WEMAT

L.C. CARD NUMBER #1 1-11 11 ALPHA-NUMERIC
HOLDING LIBRARY CODE #1 12-14 3 ALPHA

15-16 2 BLANK

L.C. CARD NUMBER #5 65-75 11
HOLDING LIBRARY CODE #5 76-78 3

79-80 2 BLANK

_
'
:
V
T

R
U
I
n
g
r

L
5
5

4
r
6

1
C
:
C
e
t
l
%
r
'
9
4
q

4
-
J

:
!
*
.

S
.
D

3
:
6
:
2
7

S
.
4

S
.
:

4
C
.
:
A
9
9
:
C
6

3

C
I
E

b
.
)

9
C
L
C
.
1
:
1
6
3
0
d

B
L
J

!
%
'
.
E

S
L
)

-

-
-
-
3
C
L
C
A
-
M
I
5
S
9
Z
9

s
L
a

t
,

.
s
.
)
-

-
-

5
C
L
C
1
6
4
9
4
1

i
-
J

S
.
)

9
C
A
.
:
1
!
7
I
7

d
-
j

9
s
A

S
L
)

9
E
L
E
*
*
1
2
i
2
.
4
7

4
6
J

5
.
%

S
.
)

O
C
L
C
o
l
g
r
n
!

S
.
)

m
a

3

C
L
C

:
4
1
.
.

i
_
u

!
.
1
7
.

S
.
)

5
.
-

:
I
.

S
.
)

9
c
L
X

:
.
7
,
2
6

4
S
.

S
.
)

t
e
-
C
A
m
1
t
-
5
9
E
.
.

d
C
.
C
r
a
1
3
4

-
t
.
.
1

:
I
%

S
i
.
)

9
-
J

S
.
D

:

A
0
1
4
4
7

r

J

A
<
4

S
,
D

!
C
i
.
C
.
m
9
0
7
2
4

-
-
J

!

E

S
i
.
)

!
C
L
:
1

-
7
3
I
5

T
.
.

.
1
%
.
1

S
-
1

t
C
L
C
e
6
3
3
:
S

J

<
1
J

:
5
0

U
r
-
C
:
1
:
D
e
2

t
_
J

4
c
)

t
u
.
)

S
:
.
:
A
9
9
:
:

-
-
-
3
C
6
:
:
:
:
6
5
9
1
7

9
,
J

.
(
4

2
:
6
:
*
9
1
C

7
L
J

A
(
4

S
_
)

3
6
.
1

-
,
J

S
i
.
)

3
C
.
C
1
t
-
5
3
7
1

F
J

r
-
%

S
L
)

i
:
J

"
r
.
A

S
i
.
)

t
-
J

r
-
.

b
.
)

:
.
:
6
C

:
2
7
7
1
1
5

!
=

b
L
D

3
C
6
C

:
1
2
6
5
1

J

5
:
4

S
i
.
)

r
C
L
C
1
0
6
7
2
3

<
3
4

S
i
.
)

S
:
L
C
1
6
5
9
i
S

4
4
4

S
i
.
)

n
6
E
1
4
1
2
6
9

S
L
D

-
5
9
3
2

1
-
U

A
m
*

5
L
D

J
C
L
C
1
6
'
1
9
5
3

r
_
J

A
<
4

5
0

)
C
.
:
A
m
l
3
i
3
F
m

i
.
J

t

S
.
)

P
C
J

5
0

S
L
:

*
C
4

S
.
)

3
C
L
-
.
!
r
.
.
.
t

r
-
J

!
-
S

1
C
6
C
A
.
1
:
3
1
2
S
t
-
J

P
:
J

S
i
.
)

1
C
L
C
:
I
i
6
5

6
.
4

!
!
.
.
.
N
.

S
O

3
C
L
C
t
.
.
-
?
3
7

°

:
'

!
.
.
\

a
.
)

J
:
I
.
:
7
.
0
.
4

.
1
9
4

t
.
.
.
)

A
S
:

S
i
.
)

4
S
-

S
L
7
.
,

A
U

A
S
:

9

:
L
C

:
A
S
9
3
5

i
L
J

t
T
:

i
L
D

9
C
L
C
I
A
.
1
4
.
7
3

3
L
J

t
u

S
L
)

5
C
L
C
I
:
t
7
7
4

a
.
.
.
I

A
1
4

S
O

S
L
)

J
C
L
C
m
l
?
t
7
E
7

i
,
J

S
L
D

_
r
C
L
C
m
1
7
1
3
.
L
.
.

4
!
4

S
.
,

6

C
L
C
.
1
3
9
2
4

4
5
:

S
.
:
,

4
C
-
S
1
6
2
5
4
4

S
i
.
.
)

C
I

S
i
)

'
,
C
L
C
A
A
1
5
6
4
7
4

t
-
J

C
I
%

S
i
.
)

.
7
1
:
m
1
i
9
A
5

,
C
L
:
6
'
1
5
6

E
L
.
)

S
i
.
)

1
C
L
C
.
.
.
.
3
3
8
7
1

E
L
'
4

S
i
.
)

!
C
L
:
1
0
5
6
7
3

5
L
J

5
5
E

S
i
.
)

t
:
L
C
7
3
5
C
7

S
L
U

3
R
E

S
i
)

t
C
.
.
:
.
1
1
7
1
4
P

5
3
E

S
i
.
)

n
,
:
I
S
I
6
6
7

S
i
.
.
)

S
i
.
)

2
C
.
C
.
1
3

i
9
7
A

f
L
J

A
(
4

S
L
D

t
C
.
:
1
2
r
1
4
2

t
.
4

i
S

S
i
.
)

e
.
P
.
,
S
L
O

!
C
L
:
m
.
1
3
3
5
P
D

5
6
,
.
)

A
(
.
7
.

S
i
.
)

1
C
L
C
A
1
3
?
1
9
-

5
-
J

S
.

S
i
.
)

5
C
.
:
-
1
2
7
7
A
(

f
l
u

(
S
.

S
i
.
)

t
C
L
C
1
2
9
5
7
m

4
C
5

S
i
.
)

r
C

4
(
4

S
LJ

1
.
:

<
S
J

S
L
D

A
C
L
:
1
6
5
9
1
.

5
L
J

A
<
4

S
L
D

?
C
L
:

7
;

L
v

!
S
S

S
L
D

E
L
J

S
i
.
)

!
C
.
:
.
1
6
-
5
1
5

4
4
,

S
i
)

!
C

:
.
1
1
6
7
=

9
L
J

5
i
A

S
i
.
)

.
?
A
m
;
5
7
e
9
m

r
L
u

S
i
.
)

1
:
:
:
.
9
5
4
5
:

t
"
;
2

S
L
D

A
<

S
L
)

i
.
L
J

S
L
D

'
C
.
:
A
m
:
,
)
i
o
?
.

4
<
4

!
-
L
)

-
C
L
:
.
.
1
%
7
2
4
4

4
1
,

S
i
.
)

<
S
J

S
i
.
)

9
C
L
C
A
1
4
^
6
9
2

t
S
A

S
L
)

4
C
L
C
7
3
t
7
A

P
L
J

:
,
,
F
r

5
0

'
5
$

S
L
D

9
L
U

P
C
J

S
i
.
)

5
C
L
:
1
5
:
2
1
.
:
:

9
-
J

C
S
J

S
i
.
)

s
c
.
_
:
1
2
,
6
7
7

v
L
L
I

9
3
.

S
i
.
)

!
C
_
C
3
D
E
.
t
e

r
.
!
%

i
L
D

9
C
L
C
1
3
+
9

?
1

t
i
.

S
i
.
)

!
C
_
!
A
A
I
.
:
t
9
6
3

b
.
0

S
i
.
)

'
C
L
)
.
.

=
3
9
7
!

9
L
J

C
=
J

S
:
C

9
-
u

!
S
A

S
i
.
)

°
C
6
.
:
1
1
:
5
7
.
.
.

r
-
J

P
C
J

S
i
.
)

1
C
.
:
I
C
4
F
c
,

F
.
J

P
:
J

,
C
L
C
1
5
9
2
r

9
.
J

!
S
s

S
i
)

!
C
L
C
1
5
1
D
7
3

?
L
.
)

!
$
.
.
)

S
i
.
)

!
C
L
:
1
4
:
:
?
-
4
6

r
.
.
0

S
L
D
.

5
C
L
C
9
3
3
6

S
.
J

t
S
/

S
i
.
)

"
C
L
C
m
l
4
e
1
.
1

=
L
U

t
S
/

S
i
.
)

!
X
L
:
m
.
.
6
6
5
1

S
i
.
.
)

C
I
%

S
L
D

!
C
L
C
1
4
3
2
S
7

S
i
.
.
)

!
S
J

S
i
.
)

9
C
L
C
9
4
3
9
7

9
L
J

0
:
4

S
i
.
)

!
C
L
C
.
1
1
4
2
C
5

9
L
U

A
4
;

S
i
.
)

4
C
L
:
.
.
1
3
3
9
7
0

S
i
.
.
)

!
S
E

S
i
.
)

4
C
L
:
i
m
1
5
3
.
6
6
A

=
L
J

S
S
E

S
i
.
)

3
C
.
C
1
5
9
9
7
5

d
L
J

C
1
N

S
L
O

P
s
:
L
C
.
.
1
3
9
2
4
3

d
L
J

C
1
N

S
L
J

'
I
:
L
C
.
.
1
6
6
6
6
3

d
L
J

C
1

S
i
.
)

C
:
L
L
.
.
.
1
6
1
6
b
3

d
L
J

O
b
V

S
L
U

:
C
.
C
.
6
9
1
3
1

E
L
U

3
0
.

S
i
.
.
)

9

:
L
C
.
1
6
1
6
7
2

b
L
V

5
.
7
%

S
i
.
.
)

'

C
.
C
.
.

7
.
b
7
0

e
L
J

O
J
N

S
.
0

t
a
.
C
1
3
g
9
/
6

d
L
J

A
4
0
(

S
i
.
.
)

d
L
J

0
5
L

S
i
.
.
)

I
C
L
L
.
1
j
7
A
.
7

b
L
J

A
.
0
*

S
i
.
.
)

1
:
L
f
-
1
6
A
i
d
9

d
L
J

C
l
%

S
L
U

1
C
L
C
.
.
1
6
D
9
1
2

d
L
J

d
a
l

S
L
U

S
L
U

C
1
4

1
1
1
.
.
0

1
:
.
C
.
1
5
6
6
.
7
9

S
L
J

C
1
7
.

S
L
U

3
:
.
1
.
.
1
6
6
4
/
7

S
L
J

A
O
(

S
L
U

d
L
J

d
d
t

S
i
.
.
)

?
C
L
C
1
6
6
9
1
3

d
L
V

d
v
N

S
i
.
.
.
)

t
O
L
J

e
j
r
,

S
W

1
c
6
c
.
1
4
*
9
4
7

b
1
J

O
b
J

b
L
J

5
:
.
C
.
.
1
2
9
c
6
6

C
L
J

3
.
"

S
i
.
.
)

d

v

A
b
l

S
i
.
.
)

9

:
L
C
.
1
3
6
e
.
3

I
S
L
J

O
b
J

S
L
U

-
-
-
d
t
.
L
.
1
6
*
7
1
0

d
L
J

d
b
u

S
i
.
.
)

I
C
L
C
1
6
3
9
1
9

d
.
1
%

S
L
J

d
r

A
4
*

S
i.)

1
:
L
c
.
.
1
4
*
9
e
2

d

J

A
l
N

S
L
U

1
C
L
C
1
t
3
o
.
e
1

O
L
J

L
b
u

S
i
.
.
)

O
L
J

A

<
r

S
i
.
)

'
C
.
C
m
1
3
'
$
e
w
5

0
6
.
J

5
,
"

S
L
J

1
:
.
:
1
6
1
9
6
2

e
L
J

d
a
m

S
i
.
.
)

"
e
r
.
.
L
A
I
5
G
3
7
5

d
L
J

I
h
d

S
L
U

e
c
i
.
c
i
s
*
s
e
s

d
L
J

A
4
4

S
L
J

l
'
C
L
C
.
1
4
7
3
1
6

d
L
J

d
b

S
i
.
.
)

7
C
L
C
1
6
t
9
.
1
1

S
i
.
.
)

A
l
q

S
L
O

.

:

.
.
.

9
/
0
9
6

e
L
J

*
C
4

S
L
J

,
:
,
:
m
9
t
9
9
2

d
L
J

S
L
D

l
t
.
.
m
I
S
/
9
9

d
L
J

T
'
L

S
i
.
.
)

t
i
L
q

l
a
m

S
i
.
.
)

9
:
-
L
1
2
9
A
.
J
@

d
L
J

I
t
s

5
1
.
1
)

*
u

S
L
U

d
L
J

4
4
u

S
L
)
-

t
:
.
C
1
5
1
3
1

d
L
J

(
*
A
.

S
W
)

1
C
.
C
.
.
1
5
4
9
6
4

d
.
0

A
S
C

S
i
.
.
)

b
3
4

S
L
J

e
L
J

A
V
4

S
i
.
.
)

l
'
i
.
:
*
*
1
4
1
9
4
6

b
L
J

0
5
6

S
i
.
.
.
)

:
.
:
I
A
5
b
9
6

d
L
J

1
9
4
%

S
L
U

*
C
L
C
4
1
3
4
1
4
2

b
L
J

A
O
(

S
i
.
.
)

S

C
L
C
1
b
6
3
*
6

d
4
V

C
b
V

S
i
.
.
)

7
1
%
.
C
9
d
1
J
0

b
L
J

A
b
L

S
L
U

1
:
L
c
3
G
b
1
e

d
L
J

C
W
%

S
L
U

,
C
.
C
.
.
1
3
7
6
3
9

d
L
J
4
s
v

S
i
.
)

9

:
L
C
6
/
9
6
1

S
i
.
.
)

P
C
J

S
i
.
.
)

d
L
U

'
a
d

S
L
.
V

O
L
.
L
1
2
7
9
6
*

S
L
U

S
i

N

S
i
.
)

I
C
L
L
1
5
5
b
3
9

d
L
u

L
I
%

S
L
D

B
C
:
L
.
.
1
5
9
0
6
2

d
L
u

S
L
J

V
L
L
L
.
1
6
e
6
4
6

d
L
V

O
S
A

S
i
.
)

-

_

C
L
1
.
1
0
.
1
2
7
1
/
9

d
L
U

6
S
U

S
L
J

,
C
L
L
.
.
.
3
9
e
7
3

d
L
V

d
d
E

S
i
.
.
)

O
C
L
(
.
.
.
.
s
6
d
3
C

d
L
U

S
i
)
'
.

S
i
.
)

C
C
.
L
.
.
1
6
6
I
1
0

o
L
U

C
J
%

S
.
)

O
L
6
L
.
1
0
1
6
e
4

d
L
u

S
S
E

S
L
)

e
c
L
.
L
.
1
5
e
9
u
9

d
L
J

U
U
N

S
.
)

S
C
L
L
1
9
9
4
/
6

d
L
u

4
(
4

S
.
)

O
L
L
(
.
.
1
4
1
6
3
4

d
L
U

A
S

5
L
)

O
C
L
L
.
1
6
6
6
9
1

d
L
u

L
I
N

S
i
.
)

9
C
L
L
1
5
6
6
6
/

d
L
J

L
I
1

*
C
.
L
1
5
9
*
1
2

d
L
V

L
I
%

S
.
)

0
,
C
L
L
.
1

/
A
m
s
3

d
L
u

(
S
u

S
L
)

-
-
-
-
-
-
-
I
L
L
L
A
7
/
J
/
1

d
L
u

L
I
2

1
1
C
1
.
1
.
9
6
9
h
6

d
L
V

S
i
t

S
.
)

4
C
6
4
.
.
.
1
6
e
t
9
1

d
L
U

O
S
.
.

b
.
J

K
6
1
.
.
.
1
3
6
6
4
9

I
L
J

O
S
*

s
.
)

e
L
.
L
9
6
/
3
2

d
l
U

A
S
L

S
L
J

_
0
C
-
L
.
1
3
6
7
J
1

d
L
U

U
L
M

S
i
.
)

_
O
C
L
C
.
.
1
1
e
9
6
3

d
L
U

A
S
'
7

S
L
J

I
C
6
1
.
.
.
.
3
7
6
6
/

d
L
U

O
S
.

5
.
0

K
.
:
m
.
1
6
0
(
6
0

d
L
U

U
J
%

S
L
J

9
L
-
L
.
.
1
4
9
8
7
J

i
L
L
.

U
S
E

S
L
)

t
c
6
L
A
A
1
6
b
9
e
.
i

S
i
.
.
)

M
I
A

b
.
)

"
L
.
L
m
m
t
1
9
1
6

U
S
J

S
.
:

O
C
:
L
"
l
A
=
9
0
2

6
.
J

A
(
N

b
.
)

U
L
-
L
1
6
t
9
e
/

d
L
J

A
4
4

S
.
J

d
L
u

C
l
E

S
.
)

d
C
L
L
.
.
7
A
9
9
0

O
L
O

S
L
J

*
C
4
C
1
7
.
6
9
3
0

T
A
L
V

A
4
1
4

b
L
O

I
C
L
L
.
1
2
3
V
2

d
L
V

4
S
J

S
.
J

O
c
t
-
C
.
.
1
4
1
7
1
6
/

d
l
U

0
3
4

S
i
.
)

I
L
.
L
.
.
.
.
9
1
6
6

d
L
u

O
S
)

S
i
.
.

I
C
L
L
.
1
6
6
I
3

b
L
U

A
4
4

S
L
J

d
C
L
L
.
.
.
6
5
1
J
h

d
L
U

'
'
C
J

S
.
)

0
C
6
.
1
.
l
,
(
e
2
4
b

d
L
V

5
.
1
4

s
.
)

d
L
u

c
.
)

5
-
)

d
L
V

e
s
:

S
i
.
)

'
C
-
L
.
.
1
1
/
9
)
4

d
L
u

A
(
S
U

S
L
)

O
U
.
L
.
1
5
9
4
6
6

S
i
.
.
)

f
n
.

S
L
)

3
C
L
L
A
9
3
5
e
t

d
L
U

C
J

S
i
.
)

d
C
.
L
.
i
t
9
D
0
9

S
i
.
.
)

S
U
N

S
.
)

I
c
L
L
.
.
(
+
u
J
e
.

d
L
U

C
J

S
L
)

d
C
.
C
.
1
6
0
1
6
0
1

d
L
U

S
L
U

e
c
o
.
.
.
9
9
3
u
2

S
i
.
.
)

O
S
U

S
L
)

d
L
U

A
S
C

S
i
.
)

m
c
L
c
.
.
1
o
u
l
s
6

S
i
.
.
)

*
K
R

S
L
J

0
9
C
6
L
.
1
1
6
0
4
5

d
L
U

M
C
J

S
L
)

B
C
6
L
m
A
I
A
1
3
7
b
_
b
L
U

S
I
.
)

I
C
.
L
.
1
3
0
6
9
0

d
L
V

A
4
4

S
i
.
.
)

e
c
m
.
C
1
3
b
3
3
6

3
6
U

A
(
6
4

S
i
.

)

/
4
4
-
4

f
r
A
m
i
i
,
4

O
r
n
i
o
w
i

S
o
m
.

"2
T

4,
G

4
!
-
C
1
-
2
1
.
1
.
7
1

.
0
.
1
T

S
T
A
T

S
U
"
N
A
R
Y

i
l
i
c

S
E
L
E
C
T

C
A
S

R
E
A
r

1
1
1
n

S
E
L
E
C
T
E
D

6
-
R
E
J
E
°
-
T
E
D

lim
ire

S
O

N
O

IM
M

O
S

E
IM

,
IN

N
*

tr
ow

.1
iir

m
or

m
o

VIII.13

APPENDIX C

DETAILED DESCRIPTION OF INTERNAL SUBROUTINES

.

1

PROGRAM: CNVT

VIII.14
PROGRAM: CNVT

1:0001 Tithl routine prints the series field but does not
trace it. R3 is set and is stored in the Link
Directory - Tags. A branch is taken to 'AEND' which
will keep track of the last entry and point to the
next entry in the directory.

1:U002 This routine is a special processor of 'TBLA' options
for the 600 fields. The byte address and the length
of the field are picked up in R4 and R5 from ' LNKBA'.
R4 is used to pick up the second indicator of the
field. If the indicator is 0 (zero) a branch is
taken to 'AEND' to keep the field. If the 2nd
indicator is 1 (one), a bit is set in 'LNKTAG' and
a branch is taken to 'AEND' to keep the field but
enclose it in brackets. If the indicator is not
9 or 1, a branch is taken to 'ADEL' to delete the
field from the directory.

1:U003 This routine is a special processor of 'TBLA' options
for the $00 fields. The byte address and the length of
the field are picked up in R4 and R5 from 'LNKBA'.
R4 is used to pick up the second indicator of the
field. If the indicator is 0 (zero) or 2 (two) a
bi'anch is taken to 'AEND' to keep the field. Other-
wise a brance is taken to 'ADEL' to delete -the field
from the directory.

1:U004 This routine is a special processor of 'TBLA' options
for the 600 fields. The byte address and the length
of the field. are picked up in R4 and R5 from 'LNKBA'.
R4 is used to pick up the second indicator of the
field. If the indicator is 2 (two) a brance is taken
to 'AEND' to save the field. If the indicator is
not 2, a branch is taken to 'ADEL' to delete the field
from the directory.

1

VIII.14

3:U000 This is the routine that does the housekeeping prior
to formatting the call number. At entry, R3 is the
sub-script from the 'LEAF' instruction which indi-
cates which type of formatting to use:

=0 LC, short first line
=1 Dewey, long first line
=2 LC, long first line
=3 LC, special, short first line
=4 Dewey, shrot first line
=5 Medical, short first line

Upon entry to the routine 3:U000, the type of library
is checked in the Break-down Control Word (BRKCW --
see page VII.4) If it is 0 (L.C. c=al number), the
090 field is checked. If present it is used as the
call number. If not present, the 050 is checked.
If present, it is used as the call number;_if_not,
a unit card is forced. The first line length of the
call number is set up. If the length in the BRKCW
is zero (0), then CNWIDTH (from the PDT) is used.
Then control is transferred to the appropriate parse.

If the library is Dewey (type 1), the 092 field is
checked. If present, it is used as the call number.
If not present, the 090 is and then the 050 fields
are checked. If none of these fields are present,
a unit card is produced.

If the library is a medical library (type 2), the
096 field is checked first. If present it is used
as the call number. If not present, the 060 is
checked. If present, the 060 is used as the call
number. If neither the 096 or 060 is present, the
090 and then the 050 are checked. If none of these
fields are present, a unit card is produced. For an
off-line request card, only the 050 field is used.

After the appropriate call number field has been
found, R2 and R3 are loaded with the byte address
and the elngth respectively from'LNKBA'. If the 050
field is used and the book is not LC and there is
no subfield I', a unit card is produced.

R8 is loaded with the address of a two-word parm list
called LCCN000P. The first word is the byte address
of the beginning of the call number field. The
second word is the byte address of a work area in
which the parsed call number will be returned. R7
is then used as the linking register to the appro-
priate entry point in the call number parse routine,
LCCN000.

VIII.14b

REG1, REG2, and REG3 are then set up to begin for-
matting the elements of the call number. REG1 is
set to 0 to indicate the index into the call number
field. REG2 is set with the negative call number
width. REG3 is set with the byte address of the
call number field (LCCN WRKA)

The first byte of the call number field will be the
element number of the first element. If this is not
0 (zero), a brance_is taken to RETURN. Otherwise
REG4 is loaded with the element number (0) and R7
is used to store a new line character (XISF') at the
beginning of the temporary formatted calf number
field (090T). R7 is used as the linking register to
LCCNUTOO to move element 0 to the 090T field. LOOPSW 1
is set with a 1 (one) if element 0 was present.

3:U009 This is a special 'end and link' routine to be used
when the routine 3:U008 (Format Remaining Elements)
is not used. It is used specifically when the call
number consists solely of an element 0 and all other
elements are to be suppressed. This routine closes
the 090T (call number field) with an end of field
delimiter (X'FD'). The routine also increments the
record length (090T-1) by 1 to account for the de-
limiter. A branch is taken to 4:U000B to store a
'4' into the second half-word of FIELD2 (formatted
call number field), since the call number is now
complete and ready to be moved to FIELD2.

PRoGRAM: CNVT

3:U0X1 - 3:U0X7 These routines set up the format control
word needed to process each of the first seven
elements of the call number. A branch is taken to
routine 3:U0XX after the 'FCW'has been set up.

3:U0XX This routine is used to format elements 1 through 7.
Processing gets to this routine from the 'EXUTBL'
with a "LD,R6" (six) instruction, which will load
R6 with the byte address of the 'FCW' (Format Control
Word) and will load R7 with the address of this routine.
R6 is used to pick up the bits from the 'FCW'.
The 8 Control Bits of the FCW are processed in the
following sections of this routine, respectively;
PH1, PH2, PH3, and PH4.

R8 is set up in this routine. R8 acts as an indicator
to determine which type of spacing to use in the
UTOO move routine.

3:U008 This routine is used to format all remaining elements,
numbers 8-254. If R3, the sub-script of the 'LEAF'
instruction, is qet = 1, every element is preceded by
a blank character in the left margin. R12 is used as
a working register to save the value of the sub-script.
R2 and R3 are set up with the negative call number
width and the byte address of the source, respectively.
R7 is used as the linking register to branch to
2 sub-routines within this routine. The sub-routines
are 'NUT' and 'NL' which check to see if the element
will fit on the previous line, and provide a new line
character, respectively. They both use R14 as a working
register. R15 is used as a working register to pick up
characters and check element numbers. R13 is used
to make sure that no element is tried more than 3
times. R7 is used as the linking register to branch
to a call. number move routine.

3:X.C101 This routine will create an extra non-PDT stamp
'Campus' for two holding libraries for Robert Morris
College. The stamp is provided if there is a parameter
of '1' provided in READPDT's. If the parameter is
zero, the stamp is not provided. R1 is used as a
working register to test the parameter which has been
previously set up in 'PDTPARMS'. R11 R2, and R3 are
loaded with the size, the subfield code, and the
stamp. These are then stored-at the location 'STAMP'.

PROGRAM: CNVT
VITI.16

3:X002 This routine is a special processor for class 'PZ'
books. This routine is used in the tree as the processor
for the 7th element (2nd cutter). R15 is set up
with the letters' 'PZ' and R7 is used as the linking re-
gister to OSIU01, the class check routine. R3 (sub-
script indicator) is set to 1 for class 'PZ'. It will
format as l*A1NNN. R3 is otherwise set to 0 to format
as l*ANN.

3:X003 This routine is used to provide the stamp 'J' before
the numeric portion of a Dewey call number. If the
characters 'Fic' are in the $a subfield of the 090
field, they are replaced with 'J'. If there is
anything else in the $a subfield, it is preceded by
'J'. If nothing is entered to precede the numerics
of the call number, a 'J' is placed there. R1 is used
as a working register to test the contents of the
$a subfield. R4 is used to store the 'J' in the
090T area. R1, R2, and R4 are used to shift the contents
over two places to the right if the $a subfield does
not contain the characters 'Fic'.

3*X004 This routine is used to decrement the call number
width by 1 for Dewey call numbers so that a stamp
will go into the left margin. R1 is used as a working
register.

3:X005 This routine provides for special cutter breaks.
Both cutters are put on one line if they fit; otherwise,
the first cutter ends with a '-' (for sub-script = 0)
or '.' (for sub-script = 1) and the 2nd cutter begins
with a blank on the next line. R4, R6, and R7 are used
as working registers.

3:X006 This routine will test the loopswitch indicated by
R2. Prior to entering this routine, R2 is set with the
first indicator from a 'TEST' instruction. If the
loopswitch is not set, a branch is taken to 'RETURN'.
If the loopswitch is set, it is incremented by 1.

PROC RAM : ("WI'
VITI.17

1:V107 Tit; r)uthw used to decvemonI Ihe call numhe
width when there is only one sot of oversize pammieter:,
and the symbol is to go in the left margin. R10
used as a working register to save and restore PDTPARMS.
The routine OSIU02 is used to set up R14 and R15
(height and width); R5 is also used as a working
register.:

3:X018 Phis routine decrements CNWIDTH (Call number width)
by one fo special stamps which go in the left margin.
Prior to entering this routine, R3 is set with the
sub-script indicator from the 'LEAF' instruction. R2
is used to pick up the stamp and R3 (sub-script indic-
ator) used as an index into a table of stamps. R4
is used as a working register.

3:X009 This routine decrements CNWIDTH (Cell number width)
by 2 for books larger than 42 cm. so that the over-
size symbol can go into the left margin. If the book
is not larger than 42 cm., a branch is taken to the
routine 3:X007 to decrement the call number width by
one for books less than 42 cm. but larger than 26 cm.
The routiLe 0SIU02 is used to set up R14 and R15
(height and width). R5 is used as a working register.
R10 is used to save PDTPARMS. A branch is taken to
3:X00/ to restore PDTPARMS.

3:X010 This routine supplies a special pseudo - 'stamp'
Jor Dewey Juvenile books. R3 i, sec up with tho
sub-script indicator from the 'LEAF' instruction
and is used as an index into a tablc of routines
to determine wnich stamp to use and where it is
Lo be placed.

R5 is set up with the address of the stamp and
R7 is set with the length of the staip before
branching to the move routine 4:UCM1. When the
stamp is to go in '.he Left margin, R9 is set up
with the addres of the stamp and a branch is taken
to the move routine OSIU09.

PRoRAM:
VII1.18

3:X011 This routine will put both cutten; on 1 line unl
the book is class 'PZ', then the cutters go on
separate lines. R15 is set with 'PZ' and R3 is ;L:t

equal to 0 before branching to the clafs check
routine OSIU01A. R6 and R7 are loaded with the address
of the FCW (format control word), and the address
of the routine to process the 'second cutter.

3:X012 This routine will suppress printing of elements 2
and 3 and supply a blank line instead for all books
in class 'K' except class 'KF'. R4 is set as a
switch before branching to 3:X014 which will suppress
printing of elements 2 and 3 for class 'K' books.
R2 is used as a working register to move in a blank
line (5F) and end of field delimiter (FD).

3:X013 This routine will put the second cutter on a new
line, preceded by a decimal point unless the book is
class 'PZ', then the second cutter is put on a new
line with no decimal point. R15 is set with 'PZ' and
R3 is set equal to zero before branching to the class
check routine, OSIU01A. R6 and R7 are loaded with the
address of the FCW (format control word), and the
address of the routine to process the second cutter.

3:X014 This routine suppresses printing of elements
2 and 3 for all books in class K if the first
position of element 2 is zero (0). R15 is set
with the _letter 'K' and R3 is 'set to zero before
branching via R7 to 3:X100 to initialize 090T-1
(size), then to OSIU01 to check the class. If
the class is not 'K' a branch is made to RETURN
to continue processing the call number. If the
class is 'K', R8 is used as a working register
to find the first position of element 2. If the
first character is zero, the fourth element is
located and REG3 is set up from R3 as the byte
address of the source (i.e. elements 2 and 3 are
suppressed). If the first position of element
2 is not zero, a branch is taken to RETURN with-
out suppressing elements 2 and 3. R14 is used
as a linking register within the routine.

VIII.18a

3:X015 This routine is used to suppress printing
of the $a subfield of the 092 field when the
subfield contains one of two different three-
letter entries. The entries to be suppressed
must be entered consecutively in the table
3:X017T. The index to the first entry is gassed
to this routine in R3 where R3 is set up with
the subscript from the LEAF instruction. R3
is then incremented by 1 to obtain the index
for the second entry. A branch and link on
R7 is then taken to the routine 3:X017 to do the
actual checking and suppression of the entry.

I

I

t

PROGRAM: CNVT
VIII.19

3:X100 This routine is used to initialize 090T-1 (size)
before branching to the class check routine, OSIU01.
The check must go through this routine first if the
check occurs before the first 7 elements have been
formatted. R8 is used as a working register to set
up 09GT-1. 3:X101 Ls used to set up a branch to
OCIU01A which will check 2 class letters. 3:X100 .

is used to set up a branch to osruoi which will check
1 class letter. R15 and R3 must be set up prior to
coming through this routine. R15 contains the 1 or
2 class letters or numbers to be checked and is set
equal to O.

3:X016 This routine will cause the pyinting of the call
number to begin one line lower. This is accomplished
by moving in the 4 characters -- $a, sort skip, an;
a blank in front of the call number. R14 and R15 are
used as working registers to pivk up the bytt' address
and the length of FIELD2, the formatted call number
field. R2, R3, and R4 are used as working registers

move the 4 characters to FIELD2. R2 is used as an
index into FIELD2, and R2 also has the length of the
call number which is stcred into the second half-word
of FIELD2 after the characters have been moved. R3
is used to store an end of field delimiter (FD) at
the end of the call number field.

3:X017 This routine is used for a Superintendent of Documents
collection. The characters 'Doc' are entered in the
$a subfield of the 090 field. The printing of this
subfield is suppressed with this routine. R4 is used to
test for the characters 'Doc'. R1 is tilled to change
the index into the OBOT area to zero. This will
effectively cause the remainder of the call number to
jOe printed over the characters 'Doc'.

3:X018 This routine will suppress elements two and
three for all books. R3 is set from REC3 and
contains the byte address of the source. R14
links to 3:X014B and returns with the byte
address of the fourth element in R3.

VIII.19a

3:X019 This routine will create an extra stamp '(LC)'
for all books if the sub-script =1 (R3 = subscript
from the 'LEAF' instruction), or for all books ex-
cept those in classes 'Q', 'D', or 'P' (not including
'PA, 'PB, etc.) if the subscript = 0. R15 is loaded
with the Class letter to be checked, and then a branch
and link on R7 is taken to OSIU01 which does the class
check. R14 is a switch for Yale to be set if R3=0
and a class 'P' is being checked. If the stamp is to
be provided, R3 is set to act as an index into the
table 3:X0019T. R4 is loaded with the address of the
stamp using R3 as an index. The stamp is then loaded
into R1, R2, and R3 and then stored into the field
'STAMP2' to be treated as a Non-PDT stamp #3.

VIII .20 PROGRAM: CM/1

4:U000 This routine is used to set up for formatting
off-line yellow request cards and any on-line
record that uses the free-text call number field
(099).

For the on-line version, R4 and R5 pick up thi
byte address and the elngth of the 099 field from
LNKBA. R4 is then incremented to point to the
first byte of the call number and R7 is loaded
with the length of the call number.

For the off-line version, the call number has
already been moved to the location TEXT. If
TEXT is longer than 160 bytes c-n end of field
delimiter (X'FD') is moved to the 090T field
(temporary formatted call nvmber field). R4 it,

loaded with the byte address of the first byte of
The call number and R7 is loaded with the length
of the call number.

For both versions, R5 is loaded with the byte
address of the 090T field and the length of the
call number is stored at 090T-I. 'The call number
is then moved to the 090T field and an End of
Field delimiter ()CM') is stored at the end of
the field. a '4' is moved into the second half-
word of FIELD2 (formatted call number field) so
that the call number will be moved to FIELD2
beginning at the fourth byte.

4:U001 This routine is used to process the PDT or
holding library stamp. R2 is loaded with the
length of the call number as it is in FIELD2 at
this point. R2 is then used as an index into
FIELD2 to move in a subfield code (X'FC97' $P).
An end of field delimiter (X'FD') is then moved
in after the subfield code. The adjusted length
of the call. number (R2+3) is then stored in the
second half-word of FIELD2.

When the program CCFP processes this record,
it will pick up the subfield code and replace
it with the folding library stamp as requested by
the institution.

VIII.20a

4:U002 This routine is used to process the non-PDT
stamp #1 (0). R3 is set prior to entering this
routine with the sub-script of the 'LEAt" con-
struction. The current possible values of R3 are
as follows:

1 Supply a b14nk line before the stamp
2 Put the stamp in the left margin
3 If the stamp is move it into the

left margin
4 If the stamp is 'j', move it in front

of the first cutter.
5 Ifs the stamp is 'j', move it in front

of the element 2
6 Supply a blank line after the stamp

The stamp is picked up from the 049 field and
moved to the temporary location STAMP. R7 is used
in this routine to test for the presence of the
stamp. R7 is then set with the length of the
stamp and R5 is set with the byte address of the
stamp. If no special handling is to be performed

= 0), a branch is taken to the move routine,
4:UCM1.

If R3 = 1, R13 is loaded with a X'82' (lower
case 'b') and R12 is used as a linking register to
4:U0012. 4:U0012 will move-a subfield delimiter
(X'FC') and the lower case 'b' followed by an end
of field delimiter (X'FD') into FIELD2 (formatted
call number field). This will provide a blank line.
Control is then passed to the routine 4:UCM1 to
move the stamp into FIELD2.

If R3 = 2, R9 is loaded with the stamp (assuming
the stamp is only one character in length)and R7 is
used to link to the routine OSIU09 where the contents
of R9 will be moved into the left margin.

If R3 is not 0, 1, 2, or 6 and the stamp is not
'j', a direct brance is taken to 4:UCM1 to move the
stamp into FIELD2, and Control is returned to this
routine. A direct brance is then taken to 3:X016
where a subfield code ()craw) and an end of field
delimiter (X'FD') are moved to FIELD2. This action
effectively produces a blank line after the stamp.

If the stamp is 'j' and R3 = 4 or 5, R15 is set
with the element number after which the stamp is
to appear. R14 is set with a 'F' to indicate to
the move routine that this is a stamp and not an
oversize symbol. A brench,is then made to OSIU06
to move the stamp.

VIII.20b

4:U003 This routine sets up the oversize routine. RS
is used to pick up the index to the oversizo rou-
tine from PDT set-up.

4:0004 This routine sets up R5 and R7 before branchir4:
to the move routine to move in the formatted call
number. R7 has the length of the 090T area and
R5 has the byte addresrs of 090T.

4:U005 This routine is uses to process the non -PDT stamp
#3 ($c). R7 is used to test for the presence of
the stamp. Prior to entering this routine, R3 is
set with the sub-script of the 'LEAF' instruction.
If it is not a 1 (one) a branch is taken to the
move routine (4:UCM1). If the sub-script is a 1,
R13 is loaded with the subfield code (c) and a
branch is taken on R12 to 4:U001 which will effec-
tively provide a blank line before the stamp.

VIII.20c

4:0999 This routine is used to end and link FIELD2
(formatted call number field) to the rest of
the record. R4 and RS are loaded with the byte
address and length of FIELD2, respectively. An
end of field delimiter is moved at the end of
1:IELD2. The byte address and the adjusted length
of FIELD2 are then re-set in the first word of
FIELD2. The adjusted length is also_ stored into

'the second word of the parameter list FLDPARM2.
R2 is then loaded with the address of FLDPARM2 and
R3 is loaded with the address of the field that
:s to immediately precede this new field. In

the case of the call number, this field is the
last field before the 100 field and l'e address
of this field is found at location XLf100. Con-
trol is lien passed to the routine X0999 to do
the actual linking.

4:UCM1 This routine is used to move the formatted call
number into FIELD2. An alternate entry point to
this routine :;-.; 4:UCM1E which will return control
back to the calling routine after the move is
performed. The calling sequence is: BAL,R3 4:UCM1E.
Prior to entering this routine, R5 and R7 are set
up with the byte address and the length of the
field to be moved, respectively. The second half-
word of FIELD2 has the length of the call number
so far. This value is loaded into_R4 which is then
.used as an index register to FIELD2. If the field
does not begin with a subfield code, a subfield "a'
(X'FC81') is stored at the beginning of the field.

For every new line indicator in the field (X'SF'
or X'1111), it is replaced with a subfield "a"
(X'FC81'). The field is then moved to FIELD2 using Fl,
R4, R5, and R7 until an end of field delimiter ()ono)
is found. The byte address and the length.of FIELD2
are adjusted in the first and second half -words re5pectively.

PROGRAM: CNVT
VI11.21

4:X001 This routine will change the PDT# from that of
'CIN' to that of 'CII' if the book is in class 'M'.
R14 is-used as a working-pegicter to pick up the
PDT# from FMTDATA and check for 'CIN'. R15 is set
with class letter 'M' before branching on R7 to the
class check routine, OSIU01. R14 is used as a work-
ing register to change the PDT# and store it back
into FMTDATA.

4:X002 This routine checks for class 'QA' and creates one
extra card for those books. R15 is set with two
class letters 'QA' before branching on R7 to the class
check routine, OSIU01A. 'FMTDATA' is incremented by
one to force an extra card, if the book is i-.. class 'QA'.

4:X003 This routine causes two extra-cards to be created for
books in class 'QD'. R15 is set with the two class
letters 'QD' before branching on R7 to the class check
routine, OSIU01A. 'FMTDATA' is incremented by two to
force two extra cards.

4:X004 This routine causes one extra card to be created for
books in class 'K' or class 'JX'. R15 is first set
with class letter 'K' and then 'JX' before branching
on R7 to the class check routines OSIU01 and OSIU01A.
'FMTDATA' is incremented by one to force an extra card.

.I,

4:X005 This routine provides a pseudo-stamp 'J' above the
call number. R5 has the byte address of the stamp
'J' and R7 has the length of the stamp (one). The
routine then branches to the move routine 4-:UCMI.

4:X006 This routine creates extra cards for MIAMI. Two extra
cards are created for books with stamp 'REF.H' or stamp
'B'. No extra cards for books with any other stamp.
Two extra cards are created for books in class 'A', 'B',
'N', 'M', 'P', or 'Z', or Dewey class 'F' or '800'.
R7 is used as the working register to check for the
presence of $b stamp. R3 (sub-script on 'LEAF' instruc-
tion) is set up prior to coming to this routine. R3 = 1
for Dewey books and R3 = 0 for LC books. R2 is used

V111.2?
0

PROGRAM: CNVT

as a working register to check for 'REF H' or 'B'
stamp. A table is set up with the list of class
letters to be checked, and R5 acts as an incrementing
index through the table. R15 is set with the class
letter from the table before branching on R7 to the
class check routine 05IU01. 'FMTDATA' is incremented
by 2 to force extra cards when needed.

4:X007 This routine is a special processor for Pittsburgh.
If the book is in the main holding library (PIT) and
it is in class 'N' the iDT# is changed to '396' --
holding library (?IR). If it is in the main holding
library and class 'M' the PDT# is changed to '383' --
Music holding library (PIK). The PDT stamp is deleted
in both cases. R14 is used as a working register to
check for main holding library; to change the PDT#
in 'FMTDATA'; to set Loopswitch 2 to delete processing
of PDT stamp ($p); and to cancel out the last
library processed code since the library code has been
changed. R15 is set first with 'M' then with 'N'
before branching to the class check routine, OSIU01.

4:X008 This routine will automatically cause two extra cards
to be created for any book with a non-PDT stamp. R7 is
used as a working register to test for the presence
of either stamp. If there is a stamp present, 'FMTDATA'
is incremented to create two extra cards.

4:X009 This routine will automatically cause one extra card
to be created for all books in class 'L' with a date
of publication of 1972 or later. R15 is loaded with
the class letter 'L' and R7 is used as the linking
register to OSIU011 the class Check routine. If it
is in class 'L', the first half-word of the 5th word
of the record is checked to see if the date of publi-
cation is 1972 or later. R4 and R15 are used as

registers to do this. The first entry in the
link directory is the byte address of the record. This
is used to get the date of publication.

5:U000 This routine will set the unit card flag. R2 and
R3 are used to set the flag and to zero the number
of extra cards. Since the call number is printed
in the user data field for unit cardF, the X910 field
(user data field) is deleted from the directory. R7 and
R8 are used to delete the entry by branching to the
program 'LINKDLT'. R2 is used to zero the addres:: to
the X910.

4:X010

PROGRAM: ntIV-

VIII.2.2A_

This routine will set the second loopswitc which Nil?
effectively cause elements 1-7 of the call mimber to ;e
suppressed whenever the $a subfield cf the 002 field i_

'Fiction'. The first two words of the call number (Ira
loaded into R4 and R5 and compared with 'Fiction'.
If they are equal, LOOPSW +2 is turned on.

PROGRAM: CNVT
VIII.23

5:U001 This routine sets up the registers to put the
Dewey class number into the user data area if it is
present; otherwise put the LC number there instead.
R1 is used to check for the presence of the Dewey
class number. R1 is also used to store an apostorophe
character in REGIS. R1 is used as an index into the
link directory table to pick up the byte address and
the length of theT82 field into R2 and R3 respective-
ly. R2 is used to point past the indicators of the
082 field. REGS then has the byte address of the
1st byte past the indicators of the 082 field.

5:U002 This routine will move the user data into 'FIELD3'
which is the formatted user data field. Prior to
branching to this routine, 16 and 10.5 are set up with
the byte address of the user data and the character
which is to replace all slash characters, respectively.
R4 is used as an index to FIELD3 beginning at the
second word. R4 will also have the length of the
user data (in bytes) +4. This value is stored in
the second half-word of 'FIELD3'. R1 is used as
a working register to pick up and test for a slash
character, in which case, the slash is replaced by
the contents of R15. R7 is set with the size of the
910 field and is used as a decrementing register to
fill up FIELD3. The characters are moved to FIELD3 in
a 'load-byte; stole -byte' fashion with R5 as the
index to the data and R4 as the index to FIELD3.

5:U003 This routine sets up the registers to put the LC
card number in the user data area. The X050 field (LC
call number) is loaded into Rl. R2 and R3 are used
as working registers to pick up the byte address and
the length of the 050 field from the link directory.
REG5 is loaded with the byte address of the 1st byte
of the 050 field past the indicator. R1 is used as
a working register to store c.1 slash character in REG15.
If there is no LC number present (X050 = 0), R1 is
used to move '40FE' --"Blank, end of record' -- into RECS.

VIII.24
PROGRAM: CNVT

5:U004 This routine sets up the registers to put the
alternate LC card number in the user data area for
"green lit" cards. R1 is used as a working
register to check the presence of an 050 field.
R1 is also used as an index to the link directory to
pick off the byte address and the length of the 050

into R2 and R3. R1 and R2 are then used to test the
second indicator which tells whether or not it is a

green lit card. R3 and R4 are loaded with a subfield
delimiter character and a lower case 'a', respectively.
R2 is used as the index to the 050. R2, R3, and
R4 are used to find the $a subfield. REG5 is loaded
with the byte address of the alternate LC card number.

R1 is used to store a slash character in REG15.
The character in REGIS is used to replace all

slashes in the call number field.

5:U005 This routine sets up the registers to put the

Dewey card number in the user data area. R1 is
used to check for the presence of the 082 (Dewey
class number) field. If the field is not present,
a branch is taken (5:U003C) to store the byte address
of the Dewey card number in REG5, and to store a
slash character in REG15.

5:U01-0 This routine sets up the registers to provide the
printing date in the user data area. R1 is used as
a working register to store a slash character in REG15.
REG15 contains the character which will replace
all slashes in the card number. R1, R2, and R3 are
used to pick off the printing data from MSGO. R1 is
used to store an end of field indicator after the

date in the 910T area. R1 is used to store the byte
address of the printing date in REG5.

5:U011 This routine provides the cataloging source in

the user data area. R1 is used to pick up the address
of the cataloging source. For the on-line system,
the source is in 'RECDBUF', the 8-word record leader.
For the off-line system,. the source is found from
'DBBA', the byte address of the record. If the
source is one of the three standard: Library of Congres::,
National Agriculture Library, or National Library
of Medicine:, its abbreviated format is moved immediately
into FIELD3 (user data field). If it is not one of the
standard forms, it must be reduced to 22 characters.

PROGRAM: CNVT

VIII.25

5:U011 (continued)
R1 - R5 are used to pick up the source and move it
to 090T (user data temp area), deleting E_1 decimals
and commas. If the field is less than 22 characters,
it is moved to FIELD3. If not, each word is then checked
against a table called 'STOPLIST-1, --Th4s is an
alphabetical list of words and abbreviations. If
the word is in this list, it is replaced with its
substitute. The word is then checked for a vowel
group. In which case, all vowels in each group except
for the first vowel in the group are suppressed.
If the cataloging source is still longer than 22
characters, any word with more than 6 characters and
with more than 1 vowel group is truncated until the
data is less than 22 characters. At which point
the contents of 910T are moved to FIELD3. R1 - R9
are used in this substitution and truncation process.

5:U012 This routine sets up the register to put the year
of the print run, plus the cataloging source, if
it is LC; otherwise put nothing into the user data
area. Rl is used as a working register to store
a slash character in REG15, and R1 is used to store
the byte address of the 910T area (temporary user
data field) into REG5. R1 is used to pick up the
byte address of the record, add cataloging source
displacement (29) and pick off the first byte in
R2. R2 is used to test to see if the cataloging
source is LC. R1 - R5 are used to pick up the abbre-
viation for 'Library of Congress' and move it to the
910T area. R2 and R3 are used to pick up the year
of the print run from MSG() and move it to the
910T area. R1 is used to store an end of field
indicator (X'FD') in the 910T area.

5:U013 This routine will provide the date of the print
run plus the catalogers indentification in the user
data area for the on-line system only. The routine
5:U010 is used to provide the date of the print run.
R4 is used to pick up the catalogers initials from
'RECDBUF', the 8-word record leader, and store it
in the 910T (user data field) after the printing
date. Rl is used to store an end of field indicator
in the 910T area.

PROGRAM: CNVT

VITI.25A

5:U014 This routine is used to provide the date of the pvint
run and the OCLC # in the user dz,ta area. The OCLC#
can only be retrived if CNVT is run on-line. In order
for this routine to work, the routine 5:U010 must be in
the tree before this routine. The address of the OCLC#
is picked up from the record leader and stored into
the first word of the parm list labeled OCLC#FPT.
The address of the parm list is loaded into t8. A
branch and link on R7 is taken to the external subroutine
CBI1:13 to convert the OCLC# from Binary to EBCDIC
tomato and to move the converted number to the user
datatemporary field (910t). R1 and R2 are used to
store an end of field delimiter (X' FD') at the end of the
910T field.

5:U015 This routine will provide in the user data area the
date of the print run plus a two-word entry from the table
5:U015T. The routine 5:U010 (which must precede
this routine in the TREE) provides the date. R3 has
the subscript from the LEAF instruction which serves
as an index into 5:U015T. R4 and R5 are used to move
the data to the temporary user data field (910T).
R1 is used to store an end of field indicator (X'FD')
at the end of the 910T area.

PROGRAM: CNVT

VIII.25B

6:U001 This routine will provide a bracketed blank line
between the main entry and the title field whenever
there is no 240 field. The address of the 240 field
Jetrived from X240. If the field is present, a branch
is taken to RETURN. 'XLT24S has the address of the last
entry in the directory before the 245 -field. This is
lcided in R3. R2 is loaded with address of
FLDPARM4. This is a three-word parm list. The first word
is the byte address of FIELD4 which is a field of 40
blanks preceeded by a '1'. The second word is the byte
length of the field. The third word is the tag (240)
in hexadecimal format. A branch is then taken to X:U999
to input the blank field and link it to the other
fields. The LEAF for this routine is entered in the
tree after 4:U999 which links the Ogo fitid.

PROGRAM: CNVT

VIIT.26

5:0999 Mi.:3 routine will end and link the 910 field (user

data). "FIELD3" is set up with the user data prior

to coming to this routine. The second half,word of,
FIELD3 has the length of the data field +4; the rest

of FIELD3 has the user data. The second half-word
of R5 is set up with the length. R1 is-used as a
working register to store X'FD' at the end of the

field. R5 is incremented Lo account for the :EOF

and the value is stored in FLDPARM3 +1 and is also
stored into the first word of FIELD3. R2 is set
with the byte address of FIELD3 and R3 is set with

the last entry in the directory which has been processed.

A branch is taken to X:U999 to end and link the 090

field.

X:U000 This is the routine which causes the formatted cards

to be produced. For the on-line system, R8 is_loaded
with the parameter list to build the formatted record
and a branch is taken to the program 'FMTREC'. Upon

return froth formatting the record, R1 is loaded with
the address-6T-'WORKAREA' and R8 is loaded with the
address of theparameters for writing the record onto
tanother1404,443nr:h is taken to ITAPEIO' to
read the recordS and write them onto ano4-her tape.
The completion status of the tape is checked after

it .as been createc. For the off-line system-f the
completion status c,f the type is checked first.

R8 is loaded with the parameter list to build the
formatted record and a branch is taken to 'FMTREC'.

Upon return from formatting the record, R1 and R8 are
set up ac. for the nn-line system. A branch is taken
to 'TAPEIO' to re-3 the tape arid write out the records.

X:U001 This routine will log the record as being selected.
'The procedure "WRTSELD' will print the message that

this record has been selected. The procedure 'PUNCHSLD'
will punch out the select card information. This

procedure being for the off-line system only. In

either case the total number of select c -.rds read is

incremented by on.-1,.

PROGRAM: CVP

VIII.26A

X:U999 This routine is used to link another field (Generally
the 090) to the rest of the record. Upon entering this
routine, R3 must have the address of the field that is
to immediately precede the new unlinked field. R2 must
have the byte address of a 3-word parm list. The first
word is the byte address cf the field to be linked.
The second word is the lenilth of the field. The third
word is the tag in hexadecimal format. R8 is loaded
with the address of the parm list for the link and a
branch and link OP R7 is taken to the external subroutine
LINKINST.

PROGRAM: CNVT

VIII.27

MAKEGRN- This routine is used when it has been determined
that a unit card is to be produced fir a record. A
unit card is a single card with no call number. The
usual cause of a unit card is an illegal call number.
This routine changes the color code for the record to
'6' (green) which causes CNVT to produce a unit card.
The call number field is printed in the user data
area for a unit card. This routine finds the call number
field for this record and changes it to an 050 field
if it is not already an 050. This change is performed
because the user data routine expects the call number
to be in the 050 field.

V111.28
PROGRAM: CNVT

4

LCCNUA00,-11 This routine is a special routine for Oberlin
to mAre the call number to the 090T (temporary call
number field). It -moues a maximum of 7 characters per
line with a decimal point after every 3 characters,
and lines are broken only at a decimal point. LCCNUAM1
increments R3 (the byte address of the source), and R5
is set to the element length -2 to skip past:the element
number and the blank. 1,CCNUA00 is used if the element
is to be preceded by a blank. LCCNUA00 does not increment.
R3 and sets R5 with the element length -1 to skip past
the element number but include the blank. R7 is used
as the link register to this routine. R4 is used to
pick off characters from the source. R6 is loaded with
a '4' (= 3 characters plus 1 decimal point to move per
group). R1 is the index to the 090T and also has the
number of characters that have already been moved.
R2 has the negative call number width. R9 is used
as a working register to=move in 'new line' 'decimal'
(5F4B).

LCCNUG00,-M1 This routine is a special routine for Hebrew
Union to move the call number to the 090T area (tempor-
ary call number field). It moves 6 digits per line,
with a space after 'I' and '0' if they begin a cutter,
and a decimal after the first numeric in the cutter.
LCCNUGM1 increments the index to the source (R3) and
loads R4 with the length of the element -2 to skip past
the element number and the blank. LCCNUGOO is used
if the element is to be preceded by a blank. LCCNUGOO
loads R4 with the length of the element -1 to skip past

7 -the element number and include the blank. R2 is set wit,'
' the negative call number width which will effectively

indicate how many more characters will fit on one line.
R6 is used as a linking register to pick off and store
the characters. R5 is used as the index to a temporary
storage area. R8 and R9 are used as working registers.
Two routines within the routine are 'IOT' and 'NL' which
test for 'I' or '0' and 'new line'.

PROGRAM: CNVT
VIIT.29

LCCNUT00,-M1 This routine moves one element of the call
number into the 090T area (call number temporary field).
LCCNUTOO is used if the element is to be'preceded by
a blank. R5 is loaded with the (element length -1)
because the first byte of the element is the element
number. All other elements use the routine LCCNUTM1.
The address of the source (R3) is incremented by 1 co

point past the element number and the blank. The e,e-
ment length is decremented by 2 to account for these
2 characters and the resulting length is loaded into R5.
R8 is se-* up in 3:U0XX as a switch to indicate which
type of spacing to use. If R8 =

1 new line after alpha
2 space fter 'I' if not followed

by a nlimeric
24 space before 'I' and '0'
32 space after alpha
63 supply decimal if element is in $a
192 supply decimal if element is in $a,

newline if it is in $b
30 space before 'I' and '0' and space

after 'I' and '0' if followed by
a numeric

6 space after 'I' and '0'

R3 is set equal to the byte address of the -source, and
R4 is used as a working register to pick off characters
from the source. R6 (six) is used as a linking register
within the routine. R2 is set equal to the complement
of the call number width. R9 is used as a working
register. R1 is used as an index into the 090T area
and is also used to indicate the number of characters
already moved. R7 is the linking register to this
routine. If an element over-flows the call number width
and the next character is not a comma (indicator to start
a new line), a return is made back to 3:U0OX ('X' being
the element number) to try moving the element again.

OSIU01 This routine will check one (OSIU01) or two (OSIU01A)
characters of the class number. R15 is set with the 1
or 2 class letters prior to entering this routine. R6
is set with the number of characters to be checked for
(1 or 2). R1 is set with the size of the 090T (tempor-
ary call number area). R7 is the linking register to
this routine. R1 is used as an index to the 090T to
pick off the class number into R2. The first byte of
the class number is found, skipping over subfield codes
and new line indicators. R2 is compared to R15 and &-
return to the calling routine is taken one (not equal)
or zero (equal) instructions past R7.

VTII.30
PROGRAM: CNVT

OSIU02 This routine sets up R14 and R15 (height and width)
used in checking for oversize. R7 is the linking
register to this routine. R5 is used as a linking
register within the routine. R4 is used as a working
register to check for the presence of the 300 field
(identification block). R4 and R5 are used to pick
up the byte address and the length of the 300 field from
the Link Directory. R11, R12, and R13 are used as
working registers and are set with X'FD', X'FC', and X'83'
respectively. R4 is used to pick up thd bytes of the 300
field and find the $c subfield (height and width).
Rli is used to convert the height and width from EDCDIC
to binary.

OSIU03 This routine will check for oversize for two sets
of parameters. R14 and R15 are already set up with
the height and width of the book. R5 is used as an
index into the table of oversize pa :,,meters for this
institution. R9 has the address of the symbol used
for the larger oversize books. If i .a book does not
meet this criterion, R9 is loaded with the address
in R8 which is the symbol for the smaller oversize
books. A branch is then taken to OSIU04 to either
move in the symbol or to check the next set of parameters.

OSIU04 This routine will check one set of oversize para-
meters. R14 and R15 are already set up with the
height and uidth of the book. R9 is already set up
with the byte address of the oversize symbol.- R5 is
used as an index into the t.thle of oversize parameters
for this institution. If the book is oversize, the size
of the symbol is picked up from R9 and loaded into R7.
R5 points to the first byte of the symbol. A branch
is taken to 4:UCM1 to move _the symbol into the call
number field.

OSIU05 This routine is used to check one set of oversize
parameters when the symbol is to go somewhere other
than above or below the call number. R14 and R15 are
already set up with the height and width of the book.
R5 is used as An index into the parameter table used
by this institution. If the book is oversize, a branch
is made back to the oversize routine. R7 is used as the
linking register.

VIII.31
PROGRAM: CNVT

OSI1106 This routine will Dut the overni : :e symbol in froni
of the element indicated by RIS. R9 is already set up
with the byte address of the oversi:.,e symbol. R1 is

loaded with the length of the 090T tield (formatted
call number field). R2 is loaded with the byte address
of the call number field. R. is used to pick up
characters from the call number and check for alphas
and numerics until the proper element is found (Indicated
by R15). R7 is used as a linking register to two routines

OSIU07 and OSIU08. OSIU07 will adjust R2 to point
past new line and subfield indicators and past blanks
or decimals. OSIU08 will adjust R2 to point to the first
new line, subfield, or end of field indicator Jt
encounters. Once the element has been found, R3 is
loaded with the byte address of a temporary storage area
called 'TEMP'. R+ is used as a working register to
move the remainder of the call number into TEMP. R4
is used to store an end of field character at the end

of TEMP. The oversize symbol is taken from R9 and
moved into the call number field. Then the remainder
of th- "all number is taken from TEMP and stored back
into the call number field after the symbol, using
R1 - R4. R4 is used to store an end of field character
at the end of the call number. R2 is used to store the
revised length (including the symbol) into 090T-1.

OSIU07 This routine will adjust R2 to point to the first
character past all new line and subfield indicators,
and past blanks or decimals. R2 is already set prior
to entering this routine with a byte address. R3 is
used to pick up bytes from R2 and to check for new
line and subfield indicators and blanks -)1., decimals.
R1 is already set prior to entering this routine with
the remaining length of the field. The linking register
to this routine is R7.

OS This routine will adjust R2 to point to the first
new li:te or subfield indicator or the first end of field
character it encounters. R2 is already set up with a
byte address from which the search is to begin and R1
is already set up with the remaining length of the
field. R3 is used to pick up the bytes one-by-one
from R2 and test for the characters. R7 is the linking
register to this routine.

PROGRAM: CNVT

V111.32

OSIU09 This routine is used to move the oversize symbol into
the left margin and shift every other element of the
call number over 1 space. R7 is used as the linking
register to this routine but the address in R7 is
immediately loaded into R6 so that the teturn to the
calling routine is made through R6. R7 is used as
the linking register within the routine. Prior to
entering this routine, R9 contains the byte address of
the oversize symbol.
If the symbol is to go in the left margin in front

of the first cutter, R14 and R15 must be set up prior
to entering the routine. R14 will have a '1' if the
first cutter is to identified as the first element
that begins with a decimal followed by at least one
alpha. R14 will have a '2' if the first cutter is
to be identified as the second call number element
that is one alpha followed by at least one numeric.
In either case, R15 will contain the symbol (in hexadecimal
format) that is to go in front of the first cutter.

One subroutine is used outside this routine. OSIU08
is used to position R2 (byte address of the call number
field) at the first new line, subfield, or end of
field indicator.

R1 is loaded with the length of the 090T area
(temporary formatted call number field.) R2 is loaded
with the byte address of the 090T area. R3 is aced
to pick up the characters pointed to by E2. R9 is used
to put "sort skip" characters (X'70') around the
oversi_ze symbol if they are not already there. The
'sort skip' character is used so that a call number
sort will not include the oversize symbol. R4, R5,
and R8 are used as working registers to shift the entire'
call number over 1 byte to the right. RS-is then
loaded with a blank character (X'40') to be moved into
the left margin in front of every other element. The
length of the call number (090T-1) is incremented
to account for the extra blanks and the stamp.

If R14=2, the second loopswitch is used to determine
when the second alpha-numeric element is encountered.
The switch is set after the first element is found.

OSTU10 This routine is used to check three sets of oversize
parameters. R14 and R15 are already set up with the
heignt and width of the book. R5 is us d as an index
into the parameter table used by this institution. R9
has the address) of the symbol used for the largest over-
size books. If the book does not fit this criterion,
R9 is' loaded with the address in R8, the symbol used
for the oversize books meeting the middle criterion.
A branch is taken to OSIU03 to check the next smaller
set of parameters. If the book is oversize, e branch
is taken to OSIU04 to move the symbol into the call
number field.

PRoGRAM: :.N VT

VII I.33

OSIU11 This routine is,used to check two sets of oversize
parameters when the symbol is to go somewhere other than
above or below the call number. Rlu and R15 are already
set up with the height and width of the book. R5 is used
as an index into the table of oversize parameters used
by this institution. If the book is oversize, a' branch
is made back to the oversize routine. R9 has the .

address of the symbol. If the book is not oversize, R9
is loaded with the address in R8, the symbol used for
the smaller oversize books. A branch is taken to OSIU05
to check the smaller set of parameters.

OSIU12 This routine is used to check three sets of oversize
parameters when the symbol is to go somewhere other than
above or below the call number. R14 and R15 are already
set up with the height and width of the book. R5 is
used as an index into the table of parameters used by
this institution. The address of the oversize symbol
is in R9. If the book is not larger than the largest
set of parameters, a branch is taken to OSIU11 to check
the next smaller set of parameters. If the book does
meet this critericn, a branch and link is taken to
OSTUO9 to move the symbol into the left margin. Upon
return, R9 is lo,Ided with a lower case 'F' and another
branch and link is taken to OSIU09 to move this also
into the left margin.

.OSIR001 This routine will provide oversize symbols for all
oversize books except for those in class 'Z'. 'fo' is
placed above the call number for books larger than the
largest parameter, and 'f' is used for books larger than
the smaller parameter. R15 is loaded wi ah class letter
'Z' and a branch is taken on R7 to OSIU01, the class
check routine. R8 and R9 are loaded with the byte
address of 'f' and 'fo' respectively and a branch is
taken. to OSIU03 to see if the book is oversize.

OSIR002 This routine will place 'f' in the left margin for
all oversize books. A branch is taken on R7 to OSIUO2
to se'.: up the height and width of the book. n is
loaded with the byte address of the stamp and c branch
is taken to OSIU04 to see if the book is oversize.

T

I

I

PROGRAM: CNVT
VIII.34

OSTR003 This routine will provide 'f' in front of the
.first cutter for all oversize books. R7 is used as the
linking register to OSIU02 and OSIU05 to set up the
height and width of the book; and to check if the book
is oversize. If the book is oversize, R9 is 1-jaded
with the byte address of the stamp. R15 is loaded
with a '4' to the stamp after the fourth element.
A branch is taken to OSIU06 to move in the symbol.

OSIR004 This routine will provide the symbol 'folio' for
the larger boAcs and 'quar' for books larger than the
smaller set oi oversize parameters. R7 is used as the
linking register to branch to OSIU02 to set up the
height and width bf the book. R8 and R9 are loaded
with the byte address of 'quar' and 'folio', respectively.
A branch is taken to OSIU03 to check for oversize.

OSIR005 This routine will provide the symbol 'FOLIO' for
the larger books and 'QUAR' for the books larger than
the smallest parameter. R7 is used as the linking
register to-OSIUO2 to set up the height and width of
the book. R8 and R9 are loaded with the byte address
of the 'QUAR' stamp and the 'FOLIO' stamp, respectively.
A branch is taken to OSIU03 to check for oversize.

OSIR006 This routine will provide the stamp 'f' for the
larger books and 'q' for books larger than the smallest
oversize parameter. R7 is used as the linking register
to OSIU02 to set up the height and width of the books.
R8 and R9 are loaded with the byte address of the stamp.
'q' and the stamp If', respectively. A branch is taken
to OS to check for oversize.

OSIR007 This routine will provide the symbol 'f' for all
oversize books except for those in class 'M'. R15 is
loaded with the class letter-4M' and a branch is taken
on R7 -to OSIU011 the class check routine. R7 is used
as the linking register to OSIU02 to set up the height
and width of the book. R9 is loaded with the byte
address of the symbol 'f', and a branch is taken to
OSIU04 to check for oversize.

PROGRAM: CNV7
VI1T.35

OSIR008 This routine will provide the symbol 'g' for the
larger books and 'f' for books larger than the smallest
oversize parameter. R7 is used as the linking register
to OSIU02 to set yip the height and width of the book.
R8 and R9 are loaded with the byte address of the
symbol 'f' and the symbol 'g', respectively. A branch
is taken toOSIU03 to check for oversize.

OSIR009 This routine will provide the symbol 'Folio' for
all oversize books. Books in class 'N' have a different
set of oversize parameters. R15 is set with the class
letter 'N' and a branch is taken on R7 to OSIU01,
the class check routine. R7 is used as a linking register
to OSIU02 to set up the height and width of the book.
R9 is loaded with the byte address of the symbol 'Folio'
and a branch is taken to OSIU04 to check for oversize.
R5 is used as a working register to change the oversize
parameters for books in class 'N'.

OSIR010 This routine will provide the symbol for all
oversize books except for those books whic:i have any
non-PDT stamp #1. R7 is used as a working register
to test for the presence of the stamp. R7 is used as
a linking register to OSIU02 to set up the height and
width of the book. R9 is loaded with the byte address
of the symbol 'Q' and a branch is taken to OSIUO4 to
check for oversize.

OSIRO11 This routine will provide the symbol 'XX' for all
oversize books except ft: those books which have the
non-PDT stamp 'ATLAS' 1r 'DISC'. R7 is used as a working
register to test for the presence of a $b stamp. R2 is
used as a working register to test for the stamp 'ATLAS'
or 'DISC'. Rris-used as the linking register to OSIU02
to set up the height and width of the book. R9 is loaded
with the byte address of the symbol 'XX' and a branch
is taken to OSIU04 to check for oversize.

OSIR012 This routine will provide the symbol 'F' for the
larger books and 'Q' for books larger than the smallest
cversize parameter unless the book has the non-PDT stamp
IkEr'. R7 is used as a working register to test for
the presence of a $b stamp. R2 is used as a working
register to test for the stamp 'REF'. R7 is used as a
linking register to OSIU02 to set up the height and width
of the book. R8 and R9 are loaded with the byte address
of the zymbol 'Q' and of the symbol 'F', respectively and
a branch is taken to OSIUO3 to check for oversize.

PROGRAM: CNVT
VIII.36

OSIR012 This routine will provide the symbol 'Folio' for
all oversize books with a non-PDT stamp #1. R7 is used
as a working register to check for the presence of a
$b stamp. R7 is used as a linking register to OSIU02
To set up the height and width of the book. R9 is
loaded with the byte address of the symbol 'Folio'
and a branch is taken to OSIU04 to check for oversize.

OSIR014 This routine will provide the symbol '*' at the end
of the numeric portion of the call number for all
oversize books. R7 is used as a linking register to
OSIU02 and OSIU05 to set up the height and width of the
book and to check for oversize. If the book is
oversize, -R9 is loaded with the byte address of the
symbol. R15 is loaded with a '3' to indicate placement
of the symbol after the third element. A branc.1 is
taken to OSIU06 to move the symbol.

OSIR015 This routine will provide the symbol 'QUARTO' for
all oversize books except those with a non-PDT stamp
#1 other than 'CHEM'. R7 is used as a working register
to check for the presence of the stamp. R2 is used
as a working register to test for the stamp_ _iCHEW.
R7 is used as a linking register to OSIU02 to set up
the height and width of the book. R9 is loaded with the
byte address of the symbol 'QUARTO'. A branch is
taken to OSIU04 to check for oversize.

0§.IR016 This routine will provide the symbol 'F' for the
larger books and 'Q' for books larger than the smallest
oversize parameter for all oversize books which do riot
have a non-PDT stamp #1. R7 is used as a working
register to check for the presence of the stamp. R7
is used as a linking register to OSIU02 to set up
the height and width of the book. R8 and R9 are loaded
with the symbol 'Q' and the symbol 'F', respectively.
A branch is taken to OSIU03 to check for oversize.

OSIR017 This routine will provide the symbol 'folio' for
all oversize books. R7 is used as a linking register to
OSIU02 to set up the height and width of the book. R9
is loaded with the byte address of the symbol 'folio'.
A branch is taken to OSIU04 to check for oversize.

PROGRAM: CNVT
VIII.37

OSIR018 This routine will provide the symbol 'f' in the left
margin for all oversize books. R7 is used as a linking
register to OSIU02 and OSIU05 to set up the height and
width of the book and to check for oversize. If the
book is oversize, R9 is loaded with the symbol 'f'.
R7 is used as a linking register to OSIU00 to move the
symbol into the left margin.

OSIR019 This routine will provide the symbol 'f' for all
oversize books. R7 is used as a' linking register to
OSIU02 to set up the height and width of tne book. R9
is loaded with the byte address of the symbol 'f'.
A branch is taken to OSIU04 to check for oversize.

OSIR020 This routine will provide the symbol 'OVERSIZE' for
all oversize books. R7 is used as a linking register
to OSIU02 to set up the height and width of the book.
R9 is loaded with the byte address of the symbol 'OVERSIZE'.
A branch is taken to OSIU04 to check for oversize.

. OSIR021 This routine will provide the symbol 'F' fo. all
oversize books. R7 is used as a linking register to
OSIU02 to set up the height-and width of the book.
R9 is loaded with the byte address of the symbol 'F'.
A branch is taken to OSIU04 to check for oversize.

OSIR022 This rout're will provide the symbol '+' for all
oversize books. R7 is used as a linking register to
OSIU02 to set up the height and width of the book. R9
is loaded with the byte address of the symbol '+'. A
branch is taken to OSIU04 to check for oversize.

,

OSIR023 This routine will provide the symbol 'q' in the left
margin for all oversize books. R7 is used as a linking
register to OSIU02 and OSIU05 to set up the height and
width of the book and to check for oversize. R9 is
loadri with the syhlol 'q'. R7 is used as a linking
r al, to OSIU09 to move the symbol into the left
if .

PROGRAM: CNVT

OSIR024 This routing will provide the symbol 'Folio' for
all oversize books and will also create one extra card
for all oversize books. R7 is used as a linking
register to OSIU02 and OSIU05 to set up the height and
width of the book and to check for oversize. If the
book is oversize, 'FMTDATA' is incremented by 1 to
create an extra card and R9 is loaded with the byte
address of the symbol 'Folio'. A branch is taken to
CSIJO4 to set up the registers and move the symbol.

OSTR025 This routine will provide the symbol '0-SIZE' for
all oversize books. R7 is used as a linkiAg register
to OSIU02 to set up the height and width of the'book.
R9 is loaded with the byte address of the symbol '0-SIZE'.
A branch is taken to OSIU04-to check for oversize.

0SIR026 This routine will provide the symbol 'F' for the
smallest oversize books, 'FF' for the larger oversize
books, and 'FFF' for the largest oversize books. R7
is used as a linking register to OSIU02 to set up the
height and wicah-of the-hook. R8, R6, and R9 are loaded
with the byte address -of-the symbol 'F', of the symbol
'FF', and of the symbol 'FFF', respectively. A branch
is taken to OSIU10 to check for oversize.

OSIR027 This routine will provide the symbol 'f' for the
larger oversize books and 'q' for books larger than
the smallest oversize parameters, both of which will go
into the left margin. R7 is used as a linking register
to OSIU02 to set up the height ana width of the book.
R8 and R9 are loaded with the symbols. 'q' and 'f',
respectively. R7 is used as a linking register to
OSIU11 and OSIU09 to cheek for oversize and to move
the symbol into the left margin.

OSIR028 This routine will provide the symbol 'q' for the
smaller oversize books, 'f' for the larger oversize
books, and 'ff' for the largest hooks; all of which will
go into dhe left margin. R7 is used as the linking
register to OSIU02 to set up the height and width Lf
the book. R8 and R9 are loaded with the symbol 'q' and
the symbol 'f', respectively. R7 is used as a linking
register to 0SIU12 and 0511309 to check for oversize
and to move the symbo3 into the left margin.

PR) RAM: CNVT
VTTI.3q

6SIR029 This routine will provide the symbol 'q' in front
of the first cutter in the left margin for all oversize
books. R7 is used as a linking register to OSIU02 and
OSIU05 to set up the height and width of the book and
to check for oversize. If the book is oversize, R14
is loaded with a '1' (one) to serve as a switch in the
move routine. R7 is used as ,t linking register to OSIU09
to move a 'q' in the left margin in front of the first
cutter.

OSIR030 This routine will provide the symbol 'Folio' for all
oversize books that do not have either of the non-PDT
stamps. R7 is used as a working register to test for
the presence of the $b or $c stamp. If no stamp is
present, R7 is used as a linking register to OSIU02 to
set up the height and width of the book. R9 is loaded
with the byte address of the symbol 'Folio'. A branch
is taken to OSIU04 to check for oversize.

OSIR031 This routine will provide the symbol 'Folio' for
all oversize books except for those in class 'ML' or
class 'MT'. R15 is loaded with the class letter 'ML'
then 'MT'. R7 is used as a linking register to OSIU011
the class check routine. R7 is used as a linking
register to OSIU02 to set up the height and width of the
book. R9 is loaded with the byte address of the stamp
'Folio'. A branch is taken to-OSIU04 to check for
oversize.

VIII.40

OSIR032 This routine will provide the symbol 't" for ldrwer
oversize books or IQ' for the smaller oversize b.loks.

The symbol will appear in front of the LC class alpha.
R7 is used as a linking register to OSIU02 to set up
the height and width of the book. R8 and R9 are loaded
with the byte address of the symbols 'Q' and 'F',

respectively. R7 is again used as a linking register
to OSIU11 to check for oversize. A branch is then taken
to OSIU06 to move the symbol in front of the first
element of the call number.

OSIR033 This routine will provide a 'q' for the smallest
oversize books, an 'f' for the larger books,. and an
'ff' for the largest oversize books. R7 links to OSIU02
to find the height and width. R6, R8, and R9 are loaded
with the byte address of the symboles 'f', 'q', and 'ff',

respectively. A branch to OSIU10 checkes for oversize
for three sets of parms.

OSIR034 This routine provides the symbole 'Oversize' for all

oversoze books in classes 'M' and 'N'. R15 is loaded
with the class ('M' or 'N') and R7 links to OSIU01,
the class check routine. If either class is found, a
BAL on R7 to OSIU02 sets up the height and width. R9

is loaded with the byte address of the symbol 'Oversize'

and a branch is taken to OSIU04 to check for oversize.

OSIR035 This routine will provide the symbol 'q' for all
'oversize books except those with a non-PDT stamp
'Ref':R7 is the working register for determining if the

stamp is 'Ref' or not. If it is not 'Ref', R7 links
to OSIU02 to set up the height and width. R9 is then
loaded with the byte address of the symbol 'q' and a

4 branch is taken to OSIU04 to check for oversize.

OSIR0q6 This routine will provide the symbol 'F' for all
oversize books that do not have the stamp 'Ref' or are

not clann 'N'. R15 is loaded with the class and R7

links to OSIU01, the class check routine. R7 is then
used as the working register to check for a stamp; R2 is

the working register to check fo: 'Ref'. If there is no
stamp or the book is not in class 'N', R7 will link

VIII.41

0SIR036 (cont'd) to OSIU02 to set up the height and width,
while R9 is loaded with the symbol 'F'. A branch is
taken to OSIU04 to check for oversize.

0SIR037 This routine will provide the symbol 'Q' for all
oversize books. R7 links to OSIU02 to get the height
and width, R9 is loaded with the byte address of the
stamp; a branch is taken to OSIU04 to check for oversize.

0SIR038 This routine provides the symbol 'Folio' above the
call number for the larger oversize books and a 't'
in front of the first element of the call number for the
smaller oversize books. R7 links to OSIU02 and gets
the height and width of the book. R9 and R8 are loaded
with byte address of 'Folio' and 't', repectively.
A BAL on R7 to OSIU11 checks for oversize. Upon return,
R9 contains the oversize symbol. If it is 'Folio' a
branch is taken to OSIU04A; if 't', a branch is taken
to OSIU06.

0SIR039 This routine will provide the symbol 'oversize'
for all oversize books. R7 links to OSIU02 to set up
the ehight and width; R9 is loaded with the byte address
of the symbol, and there's a branch to OSIU04 to check
for oversize.

OSIR040 This routine will provide the symbol 'oversize'
for all books in class 'N'. R15 is loaded with the class
letter and R7 links to OSIU01 to check the class. A
BAL on R7 to OSIU02 sets up the height and width. R9

is loaded with byte address of 'oversize', and the
routine OSIU04 checks for oversize.

OSIR043 This routine will provide the symbol 'tt' for larger
oversize books and 't' for the smaller oversize books.
R7 links to OSIU02 to set up the height and width. Re
and R9 are loaded with the byte address of the symbols
't' and 'tt', respectively. A branch taken to OSIU03
checks for oversize.

VIII.42

OSIR044 This routine will provide the symbol 'folio' for
the larger oversize books and 'oversize' for the smaller
books. R7 links to OSIU02 to get the height and width.
The byte address of the symbols 'oversize' and 'folio'
are loaded into R8 and R9 respectively. The branch to
OSIU03 checks fob oversize.

OSIR045 This routine provides the symbol 'FF' for the largest
oversize books, an 'F' for the smaller books, and a
'Q' for the smallest oversize books. A BAL on R7
t' OSIU02 sets up the height and width, while R6 is
loaded with the byte address of the symbol 'F', R8
with the byte address of 'Q', and R9 with the byte
address of "ff". A branch is taken to OSIU010 to check
for oversize for a set of three parrs.

OSIR046 This routine provides the symbol 'ff' for the larger
oversize books and an 'F' for the smaller books. R7
links to OSIU02 to set up the height and width. R8
and R9 are loaded with the byte address of 'F' and
'FF', respectively. A branch to 0BIU03 checks for an
oversize book.

OSIR047 This routine will provide the symbol 'f' in the left
margin in front of the first cutter for all oversize
books. R7 links to OSIU02 to set up the height and width
of the book and then R7 links to OSIU05 to check for
oversize. If the book is oversize, R14 is loaded with
a '1' to indicate that the symbol is to go in front of
the first cutter where the first cutter is the first
element that begins with a decimal followed by at least
one alpha. R15 is loaded with an 'f' and R7 links to
OSIU09 to move the symbol irco the left margin.

OSIR048 This routine provides the symbol 'Oversize' for all
oversize books. R7 links to OSIU02 to set up the height
and width; R9 is loaded with the byte address of
'Oversize'; OSIU04 checks for an oversize book.

VIII.43

OSIR049 This routine will provide the symbol 'f' for the larger
oversize books and 'q' for the smaller ones. The
symbol will appear in the left margin in front of the
first cutter. R7 links to OSIU02 to set up the height
and width of the book. R8 and R9 are loaded with symbols
'q' and 'f' respectively. R7 links to OSIU011 to check
for oversize. If the book is oversize, R14 is loaded
with a '2' to indicate to the move routine that the
symbol is to go in front of the first cutter where the
first cutter is identified as the second element that
is one alpha followed by at least one numeric. R7
then links to °SIU09 to move the symbol into the left
margin.

OSIR050 This routine will provide the symbol 'q' for all
oversize books. It will appear in the left margin in
front of the first cutter where the first cutter is
identified as the second element that has one alpha
followed by at least one numeric. R7 links to °SIU02
to set up the height and width of the book. R7 then
links to OSIU05 to check for oversize. If the book is
oversize, R14 is loaded with a '2' to indicate to the
move routine to place the symbol in front of the first
cutter and how to identify the first cutter. R15 is
loaded with the 'q' .and R7 links to OSIU09 to move the
symbol.

FUNCT[ON

VTII.44
SUBROUTINE: READMAST

READMAST searches the disk data base using the Libr:lry
of Congress card number and reads a bibliography file record.
KLADMAST constructs the function parameter table (FPT's) for
and issues a CAL3,2 to search the indexes, lock, and unlock
the OCLC number index for the LC card number. After the index
entry is found, a CAL3,4 is issued to read a bibliography record.
The record is read into a user-supplied buffer, and a pointer
to the index is returned to the user along with status information
about the completion of the read operation.

Upon entry to READMAST, the user parameter list contains
a pointer to a double-word aligned workarea. After the FPT's
for the CAL3's are constructed, they are stored in the workarea.
The Library of Congress card number index is then searched
using the user-supplied packed LCCN search key. The LCCN index
entry allows access to the OCLC number index for this LCCN. If
more than one LCCN entry is found for the same number, a code is
returned at completion. The first entry for the LCCN is used
to search for the OCLC number.

Before the OCLC number entry is read, a LOCK is requested
on the entr' main to prevent its use by other tasks until after
READMAST is finished with it. Then the OCLC number entry is
read. This provides a pointer to the bibliography record for the
LCCN in question. If the CCLC number read was successful, a
CAL3,4 is issued to read the bibliography record. Then the OCLC
number entry chain is unlocked, and control is returned to the
calling program.

If an error is detected for any of the reads, a completion
code is set and control is returned. An error is also declared
if the index entry for a number cannot be found.

VIIT.45

:;017WARE INTERFACE

A. LINKAGE

LI,R8 READPARM
BAL,R7 READMAST

B. PARAMETER LIST DESCRIPTION

RES 1

PZE BUFFER
PZE WRKAREA2
PZE 4096
PZE INDEX
PZE PCKDLCCN

SUBROUTINE: FYADMAT

STATUS
WA(BUFFER)
WA(WORKAREA)
MAX BUFF. SIZE
WA(INDEX TO RECORD)
WA(PACKED LCCN SEARCH KEY)

Where WORKAREA is an area of 302 words aligned on a doubleword
boundary; PUFFER is a 1024 word area; and INDEX is one word.

C. RETURN CODES -

The status of the read operation is returned in the first
halfword of the user parameter list.

STATUS = X'8000' - NORMAL COMPLETION, NO DUPLICATE KEYS
IN THE LCCN INDEX FILE

X'8001' NORMAL COMPLETION - DUPLICATE LCCN KEYS
HAVE BEEN FOUND AND FIRST BIBLIO. RECORD
READ

XIC000' - LCCN KEY NOT YET ENTERED INTO THE INDEX
FILE

X1C0011 - BIBLIO RECORD READ ERROR - ONE OR MORE KEYS
DOES EXIST IN THE INDEX FILE

X'C002' - READ ERROR OCCURED WHILE SEARCHING FOR
THE INDEX

X1C0031 - READ ERROR OCCURED WHILE READING THE
OCLC# CONTROL FILE

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

P. OCLC PROCEDURES REFERENCED - none

VIIT.46

FUNCTIONS

PROGRAM: CNVT
SUBROUTINE: FMTRI.

FMTREC performs final housekeeping on the data to be
output by CNVT and builds the output records for each catalog
card production request.

After setting up parameters upon entry, FMTREC builds the
output record leader. Then the variable length data fields
are moved to the output buffer. The following cleanups are
made on the data fields:

1) field indicators are added if missing.
2) indicators are unpacked if existant.
3) a 'fa' subfield delimiter and code are added if the

text portion of a field begins with no't' delimiter.
4) the 240 tag is changed to a 130 tag in the absence

of a 1XX tag. Indicators are not changed.
5) the 690 tag is changed to a 650 tag. Indicators are

not changed.

Field lengths are adjusted to account for all modifications.
Each variable length field is processed and inserted in the
output buffer in the order in which it appears in the forward
link chain, LNK1, in CNVT. Processing is stopped when the link
points back to the input record leader.

At the end of processing a record terminator is inserted
at the end of the record. Control is then returned to CNVT.
The following parameters are passed back to CNVT.

1) Output record length
2) Status bits indicating whether or not an error was

encountered while formatting the record.

PROGRAM: CNVT
VIII.47 SUBROUTINE: FMTREt

OFTWARE INTERFACE

A. LINKAGE

Control is passed to FMTREC from CNVT using the
following sequence:

LI,R8 PARMLIST
BAL,R7 FMTREC

B. PARAMETER LIST DESCRIPTION

The following list of parameters is passed to FMTREC.

PARM,IST GEN,4,12,16 0,0,0 STATUS/.../...
DATA LNKDV LINK DIRECTORY's

DUPE VECTOR
DATA WA(UNPACKED CARD NO)
DATA FMTDATA WA(PDTNO, INDICAT,

RESERVED BYTES)
DATA BA(OUTPUT BUFFER)
DATA :BUFSZ LENGTH OF OUTPUT BUFFER
DATA FMTLEN RETURN RECORD LENGTH

Where STATUS bits 01-3 have the following meaning.
CC1 - 4 = 0 NORMAL COMPLETION
CC1 - = 1 PROCESSING ERROR
CC2 - = 1 BUFFER OVERFLOW
CC3 - = 1 ...
CC4 - = 1 ...

C. RETURN CODES - see status bits in parameter list above.

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

PROGRAM: CNVT
VIII.48 SUBROUTINE: CB1L3

FUNCTIONS

CLUES convert.., variable-length binary fields to TCDTC.
The user specifies what sign is to be given to the result
and what fill character is to be used in padding the field.
Error conditions are encountered when there is an overflow
condition in the output field or when the output field is
not large enough to contain the sign. The return code is
posted in the first two bytes of the parameter list upon
return.

:20FTWARE 1.1\1-EFL-ACE

PROGRAM: CNVT
VIII.49 SUBROUTINE: CB1EB

A. LINKAGE

The calling sequence is

LI,R8 CBPARMS
BAL,R7 CBIEB

B. PARAMETER LIST DESCRIPTION

CBPARMS DATA BA(BINARY FIELD TO BE CONVERTED)
DATA,1 WIDTH, FILL,PLUS, MINUS
DATA BA(OUTFUT FIELD)

C. RETURN CODES

The return code is found in bytes 0 and 1 of CBPARMS.

BYTEO - X'80' Normal completion
BYTE1,= X'00'
BYTEO = X'CO' ERROR
BYTE1 = X'01' NO ROOM IN FIELD FOR SIGN
BYTEO = X'CO' ERROR
BYTE1 = X'02' FIELD OVERFLOW

D., OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCE-DRURES REFERENCED - none

PROGRAM: CNVT
SUBROUTINE: LOGO

FUNCTIONS ,

LOGMSG forma,:, ,ind prints a lc4-. entry for each OCLC
record number w,lich is selected for catalog card production.
A Loy; entry on the CNVT Log consists of OCLC Control
number, the color code, and the holding library code followed
by a sLatistical code showing whether the record was selected
(SLD) or rejected (RJD). LOGMSG also prints diagnostic
messages when required by CNVT.

VIII.51

SOFTWARE INTERFACE

A. LINKAGE

Control is transferred from CNVT via a

BAL,R7 LOGMSG

PROGRAM: CNVT
SUBROUTINE: LOGMSU

This instruction must be immediately followed by the
parameter list described below. Upon entry to LOGMSG,R7
pcints to the parameter list.

B. PARAMETER LIST DESCRIPTION

The following list of parameters must be passed to LOBMSG.

GEN,8,24 FUN,BA(MESSAGE)
DATA WA(UNPACKED LC CARD NUMBER)
DATA WA(COLOR CODE)
DATA WA(LIBRARY CODE)

Where the byte indicator 'FUN' may assume the following
values:

FUN = 0 Print message only, do no logging.
= 1 Log as selected before printing a message.
= 2 Log as missing before printing a message.
= 3 Log is rejected before printing a message.
= 15 Eject page when printing a message.

No message will be printed if BA(MESSAGE) is equal to zero.

C. RETURN CODES - none

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

PROGRAM: CNVT
SUBROUTINE: LIN1

FUNCTION;

T,IN1(initial]4 builds a link directory of addresses,
lengths, and tags for the variable data fields of the input
record. for CNVT. Then at its alt lrnate entry points, LINKINST
and L LT it respectively inserts or deletes an entry in
its U 2y.

LINK is entered after a record has been read and its leader
processed by CNVT. Included in the parameters passed are the
byte address of the record and the word addresses of the areas
in CNVT where the directories are to be built. LINK systematically
scans the variable length data fields, one field at a time
and stores the field's byte address and length and its tag in
the tables LNKBA(byte address and length) and LNKTAG(tags).
Two tables of index values are kept as a directory to the
tables, LNKBA and LNKTAG. The directory provides forward
and backward links among the fields and tags. A duplicate
set of index tables (a duplicate directory) is built as the
working directory is built. The duplicate directory is
retained'as a map of the original record during processing.
When the end of the record is encountered, the directories
are complete. The total number of entries in the directory
(the largest index entry in the forward link table) is stored
at the beginning of the backward link tables and in LNKTAG.
An error condition arises when no delimiter is found for a
field. In.this case a condition code of X'80' is returned
in the status byte of the parameter list. Otherwise, for
normal returns, the status byte is set to zero and control is
returned to the calling program.

When LINKINST is entered the parameter list contains the
word addresses of the directory and tables; but instead of tae
byte address of the input record, an index into the forward
link table is present to indicate where the new field is to be
inserted. Also present is a pointJr to the bye address of
the field to be inserted, its length and its tag. Upon entry
the total number of directory entries is incremented by one.
This value will be the index value for the new field. The
index value in the parameter list is used to get a forward
and backward link to the field immediately following where
the new field is to be inserted. The index for the existing
field is moved to the end of the directory, and the new index
is inserted it its place. Then the byte address and length
of the new field are stored as the last entry in LNKBA, and
the tag becomes the last entry in LNKTAG. The total number
of directory entries is brought up to date. An error occurs
if the index in the parameter list is greater than the number
of entries in the directory. In this case the status byte in
the parameter list is set to X'80' and control is returned.
Upon normal completion the status byte is set to zero, and
control is returned.

VIII.53
PROGRAM: CNVT
SUBROUTINE: LINK

When LINKDLT is entered, the parameter list still contains
the word addresses for the directory and tables in CNVT. An
index is also present to the forward link directory indicating
the field to be deleted. To delete the field, the index
entries in the directory for the field are nullified. This is
accomplished by setting the index value for the field in the
forward links equal to that immediately following it in the
directory. The index value for the field to be deleted in
the backward links is set equal to the index value immediately
preceding it. The lengths of the directories are not changed.
An error is declared if the index value in the parameter list
is greater than the total number of entries in the directory.
If this condition is encountered, the status byte in the
parameter list is set to X'80' and control is returned. For
normal completion, the status byte-is zeroed and control is .

returned to the calling program.

i

4

1

1

VITI.54

`30ETtARE INTERFACE (LINK)

A. LINKAGE

PROGRAM: CNVT
SUBROUTINE: LINK

Control is transferred to LINK by the following
sequence of instructions.

LI,R8 LNKPARMS
BAL,R7 LINK

B. PARAMETER LIST DESCRIPTION

LNKPARMS GEN,4,12,16 0,0,0 STATUS/ERROR NO./...
DATA BA(INPUT RECORD)
GEN,8,24 0,LNKDV LINK DIRECTORY

DUPE VECTOR

Where LNKDV

LNKDV EQU $

DATA
DATA
DATA
DATA
DATA
DATA
DATA

C. RETURN CODES

is the following list

LINK DIRECTORY DUPE VECTOR
WA(INITIAL SIZE OF LINKED DIRECTORY)
WA(LINK TAG TABLE)
WA(LINK BYTE ADDRESS AND LENGTH TABLE)
WA(FORWARD LINKS 1)
WA(BACKWARD LINKS 1)
WA(FORWARD LINKS 2)
WA(BACKWARD LINKS 2)

The status byte in LNKPARMS reflects the completion of LINK.

STATUS = X'00'
= X'80'

D. OTHER ENTRY POINTS

LINKINST
LINKDLT

Normal completion
Invalid or missing field
delimiter encountered

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

VIlf.5S

SOFTWARE INTERFACE (LINKINST)

A. LINKAGE

Calling Sequence is

LI,R8 LNKPARMI
BALMR7 LINKINST

7

B. PARAMETER LIST DESCRIPTION

PROGRAM: CNVT
SUBROUTINE: LIN:\

LNKPARMI DATA WA(FIELD BYTE ADDRESS, LENGTH, TAG)
DATA INDEX INTO DIRECTORY FOR FIELD

PRECEDING FIELD TC BE INSERTED.
DATA LNKDV

Where LNKDV is the same as for LINK.

C. RETURN CODES

The first byte of LNKPARMI is used as the status byte
on return from LINKINST.

STATUS = X'00' Normal completion
= X'80' Index for entry to be inserted is

greater than total no. of entries
in the directory.

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

TIT:T.56

SOFTWARE INTERFACE (LINKDLT)

A. LINKAGE

Calling sequence is

LI,R8 LNKPARMD
BAL,R7 LINKDLT

B. PARAMETER LIST DESCRIPTION

LNKPARMD

Program: CNVT
Subroutine: ::NIK

GEN,4,12,16 0,0,0 STATUS/ERROR NO./ . . .

DATA Index into directory for field
to be deleted.

DATA LNKDV

Where LNKDV is the same as for LINK.

C. RETURN CODES

The status byte in LNKPARMD reflects the completion of
LINKDLT.

STATUS = X'00' Normal completion
=X'80' Index for entry to be deleted is

greater than tota] no. of entries
in directory

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED --none

F. OCLC PROCEDURES REFERENCED - none

I

I

I

I

VIII.57

IUNCrioNS

SUBROUTINE: TAPEIO

rAPE10 is a general purpose input/output subroutine which
performs the following functions depending on a function
code pasm2d from the calling program.

FUNCTION CODE FUNCTION

X'00' READ
01 WRITE
02 READ REVERSE

WEOF
04 SKIP ONE RECORD FORWARD
05 SKIP ONE RECORD BACKWARD
06 SKIP ONE FILE FORWARD
07 SKIP ONE FILE BACKWARD
08 REWIND (ONLINE)
09 UNLOAD

TAPEIO sets up the FPT to be used in IOEX CAL2 from
parameters passed by the calling program. If the function
required does not involve data transfer (in the range of
codes 3-9), the only parameters needed by TAPEIO are the
function code, the unit address, and an event word. If
data transfer is to be performed (codes 0,1,2), TAPEIO
must also have the address of a buffer and the length of the
data to be read or written. Upon entry to TAPEIO, general
register 1 should be pointing to a user-defined work area
on a double word boundary.

If the function to be performed involves data transfer
or is a WEOF, two function parameter tables (FPT's) are
set up. The first FPT is for the operation requested; the
second is used to sense the device status in the event the
requested operation does not end normally. For non-data
transfer functions, only one FPT is constructed.

TAPEIO contains its own end action routine, STDEA.
STDEA uses the Test Device (TDV) status returned by the IOEX
CAL2 to determine the end action required. If the I/O
operation terminated normally, the first pyte of the event word
in the first FPT is set to X'80' and control is returned.
If the operation ended abnormally, the TDV status is
interrogated more closely to determine the exact result of
the operation.

A table of TDV s:atus values and their meanings follows:

SUBROUTINE: TAPIO
VIII.58

TDV STATUS EXPLANATION

0200 NORMAL TERMINATION BEYOND END
OF TAPE

0400 NORMAL TERMINATION AT BEGINNING
OF TAPE

B87E N':RMAL TERMINATION
000E IOP ERROR
0010 MEMORY ADDRESS ERROR
2000 WRITE PROTECT VIOLATION
1000 END OF FILE
8000 DATA OVERRUN
0800 NON-CORRECTABLE READ ERROR
0040 TRANSMISSION DATA ERROR
0020 TRANSMISSION MEMORY ERROR

A TDV status of 'B87E' initiates the return of a normal
completion code (X'80') to the user. If the status is '1000',
an end of file indication is returned. If the TDV status is
'000E', '0010', or '2000', the error is not attributed to the I/O
device; and no retry is attempted. If the status is one of the
last four in the table, the retry count is interrogated. The
retry count is arbitrarily set in TAPEIO to ten for data transfer
operations (function codes 0-2) and WEOF (code 3) and is set to zero
for non-data operations (codes 4-9). If the retry count for this
operation is zero, an abnormal return code is posted, and control
is returned to the calling program. If the retry count is greater
than zero, retry procedures are initiated based on the type of
I/O function that was attempted.

If the status is '0200' or '0400', a code is returned to
indicate the position of the tape.

If the operation was a READ and the error is correctable
(TDV status of '8000', '0040', or '0020'), the second FPT is pulled
from the work area and used to sense the device. If the sense
does not take, an unconditional backspace and retry are initiated;
otherwise STDEA will alternately backspace, or forward space (de-
pending on whether the READ was forward or reverse), sense, retry,
and sense until either the retry count is zero or the I/O opera-
tion has been performed. If the retry count reaches zero before
the operation has been terminated normally, the condition code
returned is the result of the last retry.

If the operation was a READ but the error was declared non -
correctable (TDV status '0800'), STDEA initiates an unconditional
retry. It backspaces, or forward spaces if the operation was
READ REVERSE, and attempts to READ again. The TDV status is
interrogated after each retry of the READ. If the error status
becomes correctable before the retry count is zero, STDEA will
initiate sensing of the device and the correctable READ error
procedure. In any case, retry continues until the operation is
completed normally or the retry count reaches zero. If the
retry count becomes zero before the operation has terminated
normally the condition code returned is the result of tLe last retry.

I

I

SUBROUTINE: TAPETO
VIII.59-

If the operation WdS a WRITE or WEOF, STDEA automatically
backspaces, senses, and attempts the operation again. This
procedure continues until the I/O is complete or the retry
count is zero. If the retry count reaches zero before the
operation has been terminated normally, the condition code
returned is the result of the last retry.

At its alternate entry point, TAPEWAIT, TAPEIO checks
for completion of an I/O operation performed by TAPEIO. If
the event is not complete TAPEWAIT issues a CAL2,9 0 to wait
for completion. When the event is posted complete, the
status is interrogated. If the completion is normal (X'80'),
control is returned to the return address plus one. If the
completion is abnormal (X'CO') control is returned clt the
return address. In either case BYTEO of the event word is
returned in bits 24-31 of R8.

SUBROUTINE: TAPETfl
VTTI.60

SOFTWARE INTERFACE

A. LINKAGE

The calling sequence for TAPEIO is as follows:

LI,Rl WORKAREA
LI,R8 PARMS
BAL,R9 TAPEIO

Where WORKAREA is a 16-word storage area aligned on
a doubleword boundary.

B. PARAMETER LIST DESCRIPTION

For function codes 0, 1, 2

WORD 0 FUNCTION DEVICE ADDRESS

WORD 1 BA (BUFFER)

WORD 2 BYTE COUNT

WORD 3 LEyENT STATUS

-.11

I

For functions 3-9

i

WORD 0 FUNCTION

WORD 1 EVENT STATUS

DEVICE ADDRESS 1

C. RETURN CODES

NORMAL COMPLETION: EVENTWORD BYTE 0 = X'80'
BYTE 1 = X'00'

ABNORMAL COMPLETION: EVENT WORD BYTE 0 = X' CO'
BYTE.1 = XX - CODE INDICATING
NATURE OF ABNORMAL COMPLETION.

Possible event words for abnormal completion and their
meanings are listed below:

-r-

EVENT WORD

VITF.61

TDV STATUS

SU1ROUTINE: TAPEIn

MEANING

C001 0200 NORMAL TERMINATION
BEYOND END OF TAPE
MARKER

C002 0400 NORMAL TERMINATION
AT BEGINNING OF TAPE

C00A 000E IOP ERROR
C009 0010 MEMORY ADDRESS ERROR
C008 2000 WRITE PROTECT VIOLATION
C003 1000 END OF FILE
C007 8000 DATA OVERRUN
C004 0800 NON-CORRECTABLE READ

ERROR
C005 0040 TRANSMISSION DATA

ERROR
C006 0020 TRANSMISSION MEMORY

ERROR
C000 UNIT UNRECOGNIZED
COOB SOFTWARE ERROR

For codes C000-0003 and C008-COOB, no retry
attempted. For codes C004-0007, retry has bee
if the function was a data transfer or WEOF.

D. OTHER ENTRY POINTS
TAPEWAIT

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

has, been
n attempted only

SUBROUTINE: TAPEIO
VIII.62

;i0FTWARE INTERFACE (TAPEWAIT)

A. LINKAGE

LI,R8 PARMS
BAL,R7 TAPEWAIT

B. PARAMETER LIST DESCRIPTION

same as for TAPEIO

C. RETURN CODES:

BYTE 0 of the user provided EVENT WORD is returned in
bits 24-31 of R8

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

I

I

I

I

1

I

I

I

VIII.C,3

FUNCTIONS

PROGRAM: CNVT
SMROUT1NE: RLADC.

REAll-W. reads and interprets select cards input to CNVT
in the offline mode. The Library of Congress card number
and the library code are stored in areas provided by the user.
The color code and function code are converted to binary and
stored in user fields. Then the remainder of the card is
scanned for a X'EO' which denotes the beginning of each subfield.
When the field delimiter is encountered, the following character
is interrogated to determine what type of field is present.
A X'4E' denotes the stamp field, X'60' denotes copies, X'7E'
denotes user data, and X' SC' denotes text. When a field type
is recognized, the tag foY, that field is stored in the user
area and the data length, data, and a subfield delimiter are
moved in. This procedure is repeated for each valid field
type until a X'4F' is encountered, signaling the end of the
fields. Error conditions are as follows:

1. Read error
2. Invalid character found in card column 26
3. Invalid character found in card column 20
4. The card subfield has overflowed the user storage area

For all error conditions the status byte in the user parameter
list is set to X'80' before returning. For normal completion
the status returned is X'00'.

I

PvmGRAM: CNVT
Viii.6q :3113ROUTINE: RLALY,,

::,uFTWARE INTERFACE

A. LINKACE

Control is transferred to READSC via the following
instructions.

LI,R8 RDSCPARM
BAL,R7 READSC

B. PARAMETER LIST DESCRIPTION

RDSCPARM EQU $

DATA 0 WATUS
DATA WA(USER AREA FOR OCLC NO.)
DATA WA(AREA FOR LIBRARY CODE)
DATA WA(AREA FOR COLOR CODE)
DATA WA(AREA FOR FUNCTION CODE)
DATA WA(AREA FOR TAG 1)
DATA WA(AREA FOR TAG 2)
DATA WA(AREA FOR NO. OF EXTRA CARDS)
DATA WA(AREA FOR STAMP SUBFIELD)
DATA WA(AREA FOR EXTRA COPY SUBFIELD)
DATA WA(AREA FOR TEXT SUBFIELD)
DATA WA(AREA FOR USER DATA SUBFIELD)

C. RETURN CODES

STATUS F X'00' NORMAL COMPLETION
= X'80' ONE OF THE FOLLOWING ERRORS HAS OCCURRED

1. READ ERROR
2. INVALID CHARACTER IN CARD COLUMN 20
3. INVALID CHARACTER IN CARD COLUMN 26
4. CARD SUBFIELD HAS OVERFLOWED USER

STORAGE AREA

D. OTHER ENTRY POINTS - none

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

PROGRAM: CNVT
V1-11.65 SUBROUTINE: PUNCHSC

FUNCTIoN:;

'PUNCHSC formats card, for CNVT which will he used to select
out the input cards for which catalog cards were produced. Upon
entry to PUNCHSC, the first two words of the Library of Congress
card number are stored in the next available position in the
output buffer. The final word of the L.C. card number and the
noldin library code are formatted to insure the proper position
of the library code; then the two fields are stored in the output
buffer. The index to the output buffer is advanced, and control
is returned to CNVT. When the output buffer is full, it is
written to the output device.

At its alternate entry point, CLOSESC, the output buffer is
padded to its maximum. Then the last buffer is written, end
of file housekeeping is performed, and control is returned.

I

3

I

I

I

I

I

PRuGRAM: CNVT
VT1-1-.1)6 .711ROUTINE: PUNCIN',C

-;OFTWARE INTHRFACE (PUNCHSC)

A. LINKAGE

Linkage to PUNCHSC is obtained via a

BAL,R7 PUNCHSC

::here the parameter list described below immediately
follows the BAL instruction.

B. PARAMETER LIST DESCRIPTION

DATA WA(L.C. CARD NO.)
DATA WA(LIBRARY CODE)

C. RETURN CODE none

D. OTHER ENTRY POINTS - CLOSESC

E. OCLC SUBROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

PROGRAM: CNVT
VIII.67 SUBROUTINE: PUNCH:

;;UFTWARF INTETTACL (CLOSESC)

A. LINI<AtIE

BA1,,R7 CLUEL;(2

B. PARAMETER LIST DECRIPTION - none

C. RETURN CODES - none

D. OTHER ENTRY POINTS - none

E. OCLC fABROUTINES REFERENCED - none

F. OCLC PROCEDURES REFERENCED - none

1

VIII.68

l'Ull1.1()1\1`..

IIPI)aAM: CNV 1

SUBROUTINE: LCC900

wNono breaks A call numer into components to aid in
tht_ formatting of the call number. A code set at the entry
l'uin determines the type of- call number which has Peen
input. At LCCN000, the code is set to zero; at LCCN00013,
the code i'; set to four; at LCCN000D, the code is set
to two; and at LCCN000T, the code is set to one. U)on
entry to either LCCN000, LCCN000B, LCCN000D, or LCCN0001',
R8 Points to a parameter list which contains the byte address
of the input call number. The second word of the parameter
list is I- ne byte address of a work area.

LCCNO00 scans and interrogates the call number using a
set of internal procedures. The components to be broken
down by LrCNO00 are as follows:

0 - A string of alphas, followed by a blank, which precedes
the rest of the call number.

1 Alpha portion of the Library of Congress class number.
2 - Numeric portion of the Library of Congress class number.
3 - Decimal portion of the Library of Congress class number.
4 - Date type element that precedes the first Cutter. In

reality this is any field preceded by a blank which
precedes the first Cutter.

5 - First Cutter. It must begin with a decimal followed
by an alpha string and a numeric string.

6 - Date type element that precedes the second Cutter. In
reality this is any field preceded by a blank which
precedes the second Cutter.

7 - Second Cutter. It is preceded by a decimal if component
6 is present; otherwise it immediately follows the first
Cutter. The second Cutter is a numeric string followed
by an alpha string.

8-254 These components are variable in format. Bit 7 of
the component number set to 1 indicates an element
followed by a comma.

t'om!,onent 755 always marks the end of the call number in
the work area.

When an error is encountered in the format of the call
number, the condition code is set and control is returned
to CNVT.

As each component of the call number is found, it is
stored in the workarea preceded by its component number.
When the end of the call number field is encountered, if all
required components are present, control is returned normally.

SoETWARE TNTERFACE

A. LINKNIE

VI11.69

PPOGRAM: CNVT
SUBROUTINE: LCCN,-;00

kl,P8 ErCNPARM
11AL,R7 ECCN000 (or LCCN000B, ECCNOOOD, or LCCNOOOT)

E. PARAMETER LIST DESCRIPTION

ECCNPARM DATA BA(050 FIELD) of 090 FIELD IF
PRESENT

DATA BA(WORKAREA) AREA WHERE FORMATTED
CALL NO. WILL BE RETURNED

r. RE-URN CODES

LCCNO00, LCCN000B, LCCNOOOD, & LCCN000T set the condition code
d; iollows:

CC1 - 4 = 0 NORMAL RETURN
CC3 = 1 DEFAULT TO UNIT CARD
CC4 = I BREAKDOWN WAS UNSUCCESSFUL

D. OTHER ENTRY POINTS

LCCNOOOB
LCCN000D
LCCNOOOT

E. OCLC SUBROUTINES REFERENCED - none

V. OCLC PROCEDURES REFERENCED -

NEXT
BACK
SPAN
POWER
ANY
SAVE
MARK
OPT
ALPHA
NUMER
POINT
BLANK
11,1:MN

COMMA
BREAK

Different name values for the
same procedure

1

T
1

VIIT.70
PROGRAM: CNVT
SUBROUTINE: LCC:,-)0

PROCEDURE: NEXT

PIMCEDURI DESCRIPTION

11iPP!),E: NEXT generate:, J BAE,R7 :NXT where: NXT is an
internal subroutine of LCCN000

PoRMAT: NEX1 No operands are required

EXAMPLE: NEXT
+ BAL,R7 :NXT

VT11.71
PROGRAM: CNVT
SUBROUTINE: LCCNOW,
PROCEDURE: BACK

PROCEDURRI DESCRIPTION

PURPOSE: BACK sets up a parameter value and provides a
link via R7 to the internal subroutine :BCK.
If the value of AF(1) is less than two, a BAL,R7
:BCK-1 is generated. If AF(1) is loaded into
R14 and a BAL,R7 :BCK is generated.

FORMAT: BACK AF(1)

EXAMPLE 1:

Back up one character.

BACK AL WHERE. AL=1
BAL,R7 :BCK+1

EXAMPLE 2:
Back up four characters

BACK FO
LI,R14 4

BAL,R7 :BCK

where P0=4

I

I

I

I

I

I

I

I

I

I

I

E

VIII.72

PROCEDURE DESCRIPTION

PROGRAM: CNVT
SUBROUTINE: LCCNOOU
PROCEDURE: SPAN

PURPOSE: SPAN sets up a parameter value and links to
internal subroutine :PWR-1 via R7. R14 is
loaded with the argument field. Its range of
values is the table CHARVAL.

FORMAT: SPAN AF(l)

EXAMPLE": Scan to the next non-numeric character.

SPAN NU where NU = char value for a
numeric in CHARVAL

+ LI,14 -2
+ BAL,R7 :PWR -1

PROCEDURE DESCRIPTION

VILT.73
PROGRAM: CNVT
UBROUTINE: LCCNO0u

PROCEDURE: POWEP

PURPOSE: POWER sets up a counter in R13 from AF(2) and
a value in R14 from AF(1); then links to the internal
subroutine :PWR. On return from :PWR, an unconditional
branch is taken. The effective address of the branch is
determined by the value of AF(3) and AF(5). If AF(3) =1
and AF(5) =0 a B $+2 is generated. If AF(3) =0 and AF(5) =1,
three instructions are generated:

3 $+2
B $+3
BAL,R7 :RST

If AF(5) =1 an unconditional branch to AF(4) is generated.

FORMAT: POWER AF(1),AF(2),AF(3),AF(4),AF(5)

EXAMPLE: Scan to see if there is a blank in the next 4
characters. If so, branch to T4. If not, restore R1
and branch to T4.

POWER BL,PO,NO,T4
+ LI,R13 4

+ LI,R14 8

+ 3AL,R7 :PWR
+ B $+2
+ B $+3
+ BAL,R7 :RST
+ B T4

EXAMPLE 2: Scan to see if there is a blank in the next
four characters. If not, skip the branch to T4 and continue
with the next sequential instruction. If so, branch
to T4.

POWER BL,PO,YLS,T4
+ LI,R13 4

+ LI,R14 8

+ BAL,R7 :PWR
+ B $+2
+ B T4

I

I

I

I

I

I

I

I

I

I

I

I

VIII.74

lti)INN)IIRI: Ili : CRIPTI ON

rKu(ixA: CM,T
SUBROUTINE: Lc:,,)co
PROCEDURL: ANY

LUP10:;L: ANY compare th,' chdracter value whic11 i,, in 1W,to d tdhle vdlue or d combination of fable vdlues IAL(1)3.
ille nucceeding branch Instructions are etterated on the
DaT;I::; of AF(2) which has the value U or 1 and the presence
or ab-,ence 01 AF(4) . The effective address of the branch
instruction is AF(3).

FORMAT: ANY AF(l), AF(2), AF(3), AF(4)

EXAMPLE: Is next character a period or a blank:
ANY PO/BL,NO,ABT

+ C1,15 12
+ PAZ ABT

whore PO = 4

Bh = 8

NO = I

Is the value in R15 4 or 8? If neither, branch to ABT,otherwise fall through to the next sequential instruction.

VTIT.75

PROCEDURE DESCRIPTION

PROGRAM: CNVT
SUBROUTINE: LCCNOs0
PROCEDURE: :AVE

: IURPOE: -:AVE generates a STW,1 :SAVE instruction to save
the pointer to the current location in the TEMP area.

FORMAT: SAVE

EXAMPLE: SAVE
+ STW,R1 :SAVE

VIII.76

PROCEDURE DESCRIPTION

PROGRAM: CNVT
SUBROUTINE: LCCN000
PROCEDURE: MARK

PURPOSE: MARK sets up the component number and links to the
routine :MRK which will move the component to
WORKAREA.

FORMAT: MARK AF(1)

EXAMPLE: MARK 1

+ LI,14 1

+ BAL,R7 :MRK

Mark component #1 and move it to the WORKAREA

a

9

VIII.77
PROGRAM: CNVT
SUBROUTINE: LCCN000
PROCEDURE: OPT

PROCEDURE DESCRIPTION

PURPOSE: OPT interrogates the next sequential character
value. If it is not equal to AF(1) a branch
is taken to $+2. If the character value is
equal to AF(1) , a BAL,R7 :NXT is taken.

FORMAT: OPT AF(1)

EXAMPLE: Is the next character a blank. If so, look at
following character.

OPT BL
CI,15 8

BAZ $+2
BAL,R7 :NXT

VIII.78
PROGRAM: CNVT
SUBROUTINE: LCCN000
PROCEDURE: ALPHA

PROCEDURE DESCRIPTION

PURPOSE: ALPHA compares the character value in R15 to
its name value shifted left one position (1**NAME).
The shifted name value equals the alpha character
value from the table CHARVAL. The conditions of
the succeeding branch instruction are generated
depending on the value of AF(1) which may be 0 or 1
and the presence or absence of AF(3) . If AF(3) is
absent, the effective address of the branch is AF(2).
If the branch is not taken, the next sequential
instruction is executed. If AF(3) is present the
effective address of the generated branch is $+3.
If the branch is not taken, the next instruction is
a BAL,R7 :RST followed by an unconditional branch
to AF(2).

There are five alternate names that may be used
to invoke this procedure.

NUMER - its name value equals the numeric character
value

POINT - its name value equals the character value
for a period

BLANK - its name value equals the character value
for a blank

TERMN - its name value equals the character value
for a field delimiter

COMMA - its name value equals the character value
for a comma

These procedures are used to interrogate the value
of a character.

FORMAT: ALPHA AF(1) , AF(2) , AF(3)

EXAMPLE 1: Is the character in question numeric. If not,
declare an error.

NUMER NO,ABT
+ CI,15 2

+ BAZ ABT

where no = 0

EXAMPLE 2: Is the character alpha. If it is skip around;
if not restore R1 to previous character and branch
to T8

ALPHA NO,T8,REST
CI,15 1

BANZ $+3
BAL,7 :RST

T8

where no = 0 and REST = 1

,

1

1

1

I

VIII.79

PROCENRE DEA:RLPTION

PURPME:

PROGRAM: CNVT
SLPROUTINE: LCCI'MO
PROCEDURE: BREAK

BREAK :,e-t:, up a parameter value and links to the internal
subroutine, : hRK. R14 is loaded with AF(1) . Its range of
valL,_!s is equal to the range of values in the table CHARVAL.

FORMAT: BREAK AF(1)

EXAMPLE:

Scan to find the .ext numeric character.

BREAK NU where NU = CHAR. value
for a numeric is CHARVAL

+ LI,14 2

+ BAL,R7 :BRK

VITI.80

FUNCTIONS

PROGRAM: CNVT
SUBROUTINE: TREES

(NODETBL)

Trees (entry point, NODETBL) is a large table of index
values to processing routines within CNVT. The trees consist
of nodes, leaves, and tests which are generated by the pro-
cedures, NODE, LEAF, and TEST. The initial index into
NODETBL is obtained from the profile definition table for
a member hrlding library.

Each NODE has as the first argument field the number
of leaves in its particular tree. The minimum is two and
the maximum is thirteen leaves. The second argument field
is the address of the first leaf in the tree. The leaves
are picked up sequentially beginning with the leaf indicated
by the seconi argument field. If any nodes ar(! encountered
in the list, they are expanded in place.

A TEST causes a check to be made on a switch in CNVT
and a choice of entries to be made base,d cln the value of
the switch. When a TEST is encountered, the value of argu-
ment field (1) tells which loop switch in CNVT is to be
tested. Argument field (2) gives the address of the first
of the two alternate entries. If the switch tested is set,
the first alternative is selected; if the switch is not set,
the second alternative is selected. The alternatives may
be nodes or leaves.

The first argument field of a LEAF is an index into a
table of routines called EXUTBL. The second argument field
is used as an indicator within the routine set up by EXUTBL.

VIII.81

:_OFTWARE INTERFACE

A. LINKAGE not applicable

B. Parameter List Description none

C. Return Codes - none

D. Other Entry Points - none

E. OCLC Subroutines Referenced

F. OCLC Procedures Referenced

NODE
LEAF
TEST

PROGRAM: CNVT
SUBROUTINE: TREES

(NODETB L)

VIII.82

PROCEDURE DESCRIPTioN

PURPOSE:

PROGRAM: CNVT
SUBROUTINE: TREES

(NODETBL)
PROCEDURE: NODE

The purpose of the procedure NODE is to generate a
word in NODETBL which indicates the number of leaves to be
picked up from NODETBL and where in the table to find the
leaves.

There are two alternate names for this procedure,
TEST and LEAF. The CNAME value assigned to each name indi-
cates to the processing program which type of entry in
NODETBL it is using.

NODE has a CNAME value of 8. TEST has a CNAME value of
4. TEST is used to generate a word which indicates a switch
to be tested. It also includes the location in NODETBL
for the two alternative branches to be taken depending on
the value of the switch.

LEAF has a CNAME value of 0. It generates a wort
which contains an index value into the table 'EXUTBL' in
CNVT. Also included in the word is an indicator to be
passed to the routine pointed to in EXUTBL.

FORMAT:

NODE AF(1) , AF(2)

EXAMPLE 1:

NODE 10, #100.
+ GEN,4,12,16 8,10,#100

CNVT will pick up ten entries in NODETBL beginning with
#100.

EXAMPLE 2:

TEST 2,#1000
+ GEN,4,12.16 4,2,#1000

CNVT will test loop switch 2. If the switch is set,
the first entry at #1000 is selected. If the switch is not
set, the second entry at #1000 is selected.

EXAMPLE 3:

LEAF 65,1
+ GEN,4,12,16 0,65,1

CNVT will execute the load instruction at 'EXUTBL/4.65.
The value 1 will be passed to the processing routine.

VIII.83

APPENDIX E

ADDITIONAL PROCEDURE DOCUMENTATION

VIII.84

PROCEDURE DESCRIPTION

PURPOSE:

PROGRAM: CNVT
PROCEDURE: WRTMSG

WRTMSG establishes parameters and links to the external sub-
routine LOGMSG. The CNAME value of WRTMSG is 0 and indicates
to LOGMSG that a single message is to be printed. There are
four alternate names for WRTMSG.

WRTSELD - has a CNAME value equal to 1 and indicates that
a request is to be logged as selected.

WRTMISS - has a CNAME value of 2 and indicates that an
OCLC number is to be logged as missing.

WRTRJD - has a CNAME value of 3 and indicates that a
request is to be logged as rejected.

WRTEJECT - has a CNAME value of 15 and indicates that the
page is to be ejected when printing the message.

FORMAT:
WRTMSG AF(1)

EXAMPLE 1:
WRTMSG STATHEAD

BAL,R7 LOGMSG
GEN,8,24 0,BA(STATHEAD)
DATA MSGPARMS

EXAMPLE 2:
WRTSELD

BAL,R7 LOGMSG
GEN,8,24 1,0
DATA MSGPARMS

I

I

1

I

I

I

I

I

I

I

I

I

I

I

I

I

VI11.85

1'R6CflURE DESCRIPTION

PURPOSE:

PROGRAM: CNVT
PROCEDURE: PUNCHSLD

PUNCHSLD checks to see if any select cards are to be punched.
If so, a BAL to PUNCHSC is taken to punch the cards for a call
number. Also included in PUNCHSLD are the parameters for
PUNCHSC.

FORMAT:

PUNCHSLD

EXAMPLE:

PUNCHSLD

+ LW,R7 STATSW
+ BGZ $+4
+ BAL,R7 PUNCHSC
+ DATA UNPACKED WA(UNPACKED LC CARD NO.)
+ DATE LASTLIB WA(LIBRARY CODE)

VI:J.86

PROCEDURE DESCRIPTION

PURPOSE:

PROGRAM: CNVT
PROCEDURE: ATBL

ATBL builds entries in the table TBLA. E,Fch entry con-
!lists of a displacement and an address which ;1.11 be the effec-
tive address of a branch instruction.

FORMAT:

ATBL AF(1), AF(2)

EXAMPLE 1: ATBL 015, ALOW

+ ORG,1 BA(ITBL) +15
+ DATA,1 0
+ ORG TRLA +O
+ B ALOW

EXAMPLE 2: ATBL

+ ORG,1 BA(ITBL)+20
+ DATA,1 1
+ ORG TBLA+1
+ B ALOW

I'
I

VIII.87
PROGRAM: CNVT
PROCEDURE: NOTE:

PROCEDURE DESCRIPTION

PURPOSE:

NOTE: advances the location counter 1 byte.

FORMAT:

NOTE:

EXAMPLE

NOTE:
+ BOUND 1

I

I

I

VIII.89

0' () Univer:;ity example -

Prim 'KEAD PDT' S' it in found that Ohio University a:;eu
the default proeessorn of BLUE I and Yrunw I. From the
on neetion 'TI(F.EV, it is found that a hLUE 1 taken
ten inntruetionn beginning with #100; and a YELLOW 1 taken
ten instructions beginning with #110. BLUE 1 yields the
following instructions:

LEAF 1,0
LEAF 3,0
LEAF 4,0
LEAF 5,0
LEAF 6,0
LEAF 7,0
LEAF 8,0
LEAF 9,0
LEAF 2,0
NODE 9,#111 LEAF 11,0

LEAF 12,0
LEAF 13,0
LEAF 14,0
LEAF 15,0
LEAF 16,0
LEAF 17,0
LEAF 18,0
LEAF 25,0

The first number in the argument field of the 'NODE'
instruction tells how many instructions to take and the
second number tells from where to start taking them. Those
instructions at that location replace the original 'NODE'
instruction.

The first number in the argument field of a 'LEAF'
instruction is an index into the table 'EXUTBL' from which
the addresses of the formatting routines are pushed into
a stack. To format the call number for Ohio University,
the following routines are used in order:

VIII.90

1.) 3:U000
2.) 3:U001
3,) 3:U002
4.) 3:U003
5.) 3:U004
6.) 3:U005
7.) ,.1:U006

8.) 3:U007
9.) 3:U008

10.) 4:U001
11.) 4:U002
12). 4:U003
13.) 4:U004
14.) 4:U005
15.) 4:U101
16.) 4:U999
17.) X:U000

This will process a call number in this manner:

PDT STAMP
NON-PDT STAMP # 1
AB
123.45
1962
C78
1979
D96
NON-PDT STAMP #2

I

With no user data automatically supplied, no automatic
oversize symbol, and no special tag processors.

1

VIII.93

-ro

V; Clu.ei

3: j001

VIII.95

V
RI I :r-r
'JELL, k
r-Y a. rt. kt i;
r)L e_)

6LitiLlv

flAbV E l.isLM1A1/

AAA

71_1111-1 A.(ri

vt ak,f t

uki_r_ f etlx!6

3v1(17,1/
-1-

fmV 3-r? -9n AI

tv 44 Cif

-9(1' I Q
1-,11 lq

flt/ r-q (1'130,1
N 1)1

1 ni-gc
J (11.1109-1-:,

(,ice_) 1

96'IIIA

1 -
*-1-

'II 1101
),- / ";rfi
Qr$P-1 1 1 ft, 1 1,N1 1,1

avon:c

3: UtiO5

VTII.97

g_ t
rt-i 1. ('16

nt r .2
1-1A-'-) I itt'L
Ti L.1,-1-Tri

Mc it L.I.E ir*ro-r
t 0,14 rue,.

,)'t '

V4.

l'q I i 7-7 4.)A' fri
iv(w j.-1 Nt AND
B t T& 1--Etti)j4)
i ('-i//)1).4, /it.),)
It4A41:-'

11,(vC L r-Eigt.Arr
011 I. L,

1-1_ Mr' ft

3:U004

3:U006

VItI.98

3:U007 3:U008

4:U001

ye':

1,q
Xf Lt.

Uk N(
I J1 Y

flyU ifLtiuri S

Mc k& Lki fl10,17
iI b tf. A I. A_, 1*,r,,

I I in' ' tik'fr /I

AAc ta

it tdtk
-re /1e6 4

711

c
e,

7 ELEPiri

V
MOVE rot
C 1`,

6 A

Ti. MP)k-

fiD

4:U003 (II

4:U604

,1-1 2 k--
-rttil..2" ((Cie

A) t

VIII .99

WA ;I 4. /jj 4! # 7.L, .1
0 k/ C.- it' .4 r? L

rilt.lt
1, f.' 1- 1

1i1 ii I f 11 feat]

tk

alb V F r) 1.71
AV V-A'op)

t) L ti

F. if t /1

